A Multiport Electric Energy Routing Scheme Applied to Battery Energy Storage System

In this paper, the research status of topology and control strategy of energy storage grid-connected system is analyzed, and aiming at the working characteristics of the repurposed battery, a cascade power electronic transformer (CPET) with independent DC output is proposed. The working principle of...

Full description

Saved in:
Bibliographic Details
Main Authors: Guanglin Sha, Qing Duan, Wanxing Sheng, Aiqiang Pan, Zhe Liu, Chunyan Ma, Caihong Zhao, Jiaxun Teng, Lumin Fu, Yi Zheng
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Engineering
Online Access:http://dx.doi.org/10.1155/2021/6637926
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the research status of topology and control strategy of energy storage grid-connected system is analyzed, and aiming at the working characteristics of the repurposed battery, a cascade power electronic transformer (CPET) with independent DC output is proposed. The working principle of current fed isolated bidirectional DC-DC converter (CF-IBDC) and cascaded H-bridge (CHB) is analyzed, and the decoupling control strategy is designed. In this paper, a hierarchical control strategy is designed for the repurposed battery energy storage (RBES) grid-connected system based on CPET, which consists of three layers: energy layer, power layer, and state of charge (SOC) layer. The energy layer responds to active and reactive power scheduling instructions, the power layer controls the grid-connected current and tracks the grid voltage, and the SOC layer equates the charged state of repurposed batteries. A 3 MVA/12 kV three-phase grid-connected simulation system was established, and a 1 kW single-phase system experiment platform was designed. The simulation and experimental results can verify the correctness of the theoretical analysis and the feasibility of the control strategy.
ISSN:2314-4904
2314-4912