Future Outdoor Safety Monitoring: Integrating Human Activity Recognition with the Internet of Physical–Virtual Things

The convergence of the Internet of Physical–Virtual Things (IoPVT) and the Metaverse presents a transformative opportunity for safety and health monitoring in outdoor environments. This concept paper explores how integrating human activity recognition (HAR) with the IoPVT within the Metaverse can re...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Chen, Jia Li, Erik Blasch, Qian Qu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/7/3434
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The convergence of the Internet of Physical–Virtual Things (IoPVT) and the Metaverse presents a transformative opportunity for safety and health monitoring in outdoor environments. This concept paper explores how integrating human activity recognition (HAR) with the IoPVT within the Metaverse can revolutionize public health and safety, particularly in urban settings with challenging climates and architectures. By seamlessly blending physical sensor networks with immersive virtual environments, the paper highlights a future where real-time data collection, digital twin modeling, advanced analytics, and predictive planning proactively enhance safety and well-being. Specifically, three dimensions of humans, technology, and the environment interact toward measuring safety, health, and climate. Three outdoor cultural scenarios showcase the opportunity to utilize HAR–IoPVT sensors for urban external staircases, rural health, climate, and coastal infrastructure. Advanced HAR–IoPVT algorithms and predictive analytics would identify potential hazards, enabling timely interventions and reducing accidents. The paper also explores the societal benefits, such as proactive health monitoring, enhanced emergency response, and contributions to smart city initiatives. Additionally, we address the challenges and research directions necessary to realize this future, emphasizing AI technical scalability, ethical considerations, and the importance of interdisciplinary collaboration for designs and policies. By articulating an AI-driven HAR vision along with required advancements in edge-based sensor data fusion, city responsiveness with fog computing, and social planning through cloud analytics, we aim to inspire the academic community, industry stakeholders, and policymakers to collaborate in shaping a future where technology profoundly improves outdoor health monitoring, enhances public safety, and enriches the quality of urban life.
ISSN:2076-3417