Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms

This research aimed to automate the fitting of kinetic models using genetic algorithms (GAs) to optimize the estimation of kinetic parameters—the reaction rate constant (k) and the initial value of total titratable acidity (TTA, C₀)—and enhance predictive accuracy. Experimental data were collected...

Full description

Saved in:
Bibliographic Details
Main Authors: Alejandro Kevin Méndez Castillo, Elizabeth Contreras López, Jesús Guadalupe Pérez Flores, Laura García Curiel, Emmanuel Pérez Escalante, Karla Soto Vega, Carlos Ángel-Jijón, Alicia Cervantes Elizarrarás
Format: Article
Language:English
Published: Universidad Autónoma de Chihuahua 2025-06-01
Series:Tecnociencia Chihuahua
Subjects:
Online Access:https://revistascientificas.uach.mx/index.php/tecnociencia/article/view/1847
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849332066930393088
author Alejandro Kevin Méndez Castillo
Elizabeth Contreras López
Jesús Guadalupe Pérez Flores
Laura García Curiel
Emmanuel Pérez Escalante
Karla Soto Vega
Carlos Ángel-Jijón
Alicia Cervantes Elizarrarás
author_facet Alejandro Kevin Méndez Castillo
Elizabeth Contreras López
Jesús Guadalupe Pérez Flores
Laura García Curiel
Emmanuel Pérez Escalante
Karla Soto Vega
Carlos Ángel-Jijón
Alicia Cervantes Elizarrarás
author_sort Alejandro Kevin Méndez Castillo
collection DOAJ
description This research aimed to automate the fitting of kinetic models using genetic algorithms (GAs) to optimize the estimation of kinetic parameters—the reaction rate constant (k) and the initial value of total titratable acidity (TTA, C₀)—and enhance predictive accuracy. Experimental data were collected from bananas (Musa paradisiaca L.) at ripening stage 2 on Von Loesecke scale, measuring TTA at specific intervals, and three kinetic models—zero-order, first-order, and second-order—were fitted. For optimization, Python-based GA was used to minimize the mean squared error (MSE) and evaluate performance based on R2, AIC, and BIC. Results indicated that while the zero-order model provided the best statistical fit (R2 = 0.918, lowest AIC and BIC), validation on unseen data favored the second-order model, which exhibited superior predictive accuracy (test R2 = 0.9349, lowest test MSE). The integration of GAs enhanced the robustness of kinetic fitting by effectively navigating parameter space and avoiding local minima, outperforming traditional optimization methods, demonstrating their ability to refine parameter estimation and improve model generalization. Future research should explore hybrid models that combine mechanistic kinetic equations with machine learning techniques (e.g., neural networks, or support vector regression), to better capture the biochemical processes underlying acidity changes in bananas. DOI: https://doi.org/10.54167/tch.v19iEspecial.1847
format Article
id doaj-art-c7ef7f4812b94de8a7111b5cb158a8d0
institution Kabale University
issn 1870-6606
2683-3360
language English
publishDate 2025-06-01
publisher Universidad Autónoma de Chihuahua
record_format Article
series Tecnociencia Chihuahua
spelling doaj-art-c7ef7f4812b94de8a7111b5cb158a8d02025-08-20T03:46:20ZengUniversidad Autónoma de ChihuahuaTecnociencia Chihuahua1870-66062683-33602025-06-0119Especial10.54167/tch.v19iEspecial.1847Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithmsAlejandro Kevin Méndez Castillo0https://orcid.org/0009-0001-8347-074XElizabeth Contreras López1https://orcid.org/0000-0002-9678-1264Jesús Guadalupe Pérez Flores2https://orcid.org/0000-0002-9654-3469Laura García Curiel3https://orcid.org/0000-0001-8961-2852Emmanuel Pérez Escalante4https://orcid.org/0000-0002-4268-9753Karla Soto Vega5https://orcid.org/0009-0003-1052-959XCarlos Ángel-Jijón6https://orcid.org/0000-0002-1047-9612Alicia Cervantes Elizarrarás7https://orcid.org/0000-0002-1432-2882Universidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de HidalgoUniversidad Autónoma del Estado de Hidalgo This research aimed to automate the fitting of kinetic models using genetic algorithms (GAs) to optimize the estimation of kinetic parameters—the reaction rate constant (k) and the initial value of total titratable acidity (TTA, C₀)—and enhance predictive accuracy. Experimental data were collected from bananas (Musa paradisiaca L.) at ripening stage 2 on Von Loesecke scale, measuring TTA at specific intervals, and three kinetic models—zero-order, first-order, and second-order—were fitted. For optimization, Python-based GA was used to minimize the mean squared error (MSE) and evaluate performance based on R2, AIC, and BIC. Results indicated that while the zero-order model provided the best statistical fit (R2 = 0.918, lowest AIC and BIC), validation on unseen data favored the second-order model, which exhibited superior predictive accuracy (test R2 = 0.9349, lowest test MSE). The integration of GAs enhanced the robustness of kinetic fitting by effectively navigating parameter space and avoiding local minima, outperforming traditional optimization methods, demonstrating their ability to refine parameter estimation and improve model generalization. Future research should explore hybrid models that combine mechanistic kinetic equations with machine learning techniques (e.g., neural networks, or support vector regression), to better capture the biochemical processes underlying acidity changes in bananas. DOI: https://doi.org/10.54167/tch.v19iEspecial.1847 https://revistascientificas.uach.mx/index.php/tecnociencia/article/view/1847ripening kineticsgenetic algorithmsparameter estimationpost-harvest modelingTTA decreasingfood quality
spellingShingle Alejandro Kevin Méndez Castillo
Elizabeth Contreras López
Jesús Guadalupe Pérez Flores
Laura García Curiel
Emmanuel Pérez Escalante
Karla Soto Vega
Carlos Ángel-Jijón
Alicia Cervantes Elizarrarás
Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
Tecnociencia Chihuahua
ripening kinetics
genetic algorithms
parameter estimation
post-harvest modeling
TTA decreasing
food quality
title Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
title_full Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
title_fullStr Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
title_full_unstemmed Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
title_short Improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
title_sort improving kinetic model fitting for total titratable acidity in bananas using genetic algorithms
topic ripening kinetics
genetic algorithms
parameter estimation
post-harvest modeling
TTA decreasing
food quality
url https://revistascientificas.uach.mx/index.php/tecnociencia/article/view/1847
work_keys_str_mv AT alejandrokevinmendezcastillo improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT elizabethcontreraslopez improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT jesusguadalupeperezflores improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT lauragarciacuriel improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT emmanuelperezescalante improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT karlasotovega improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT carlosangeljijon improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms
AT aliciacervanteselizarraras improvingkineticmodelfittingfortotaltitratableacidityinbananasusinggeneticalgorithms