Hyers-Ulam Stability and Existence Criteria for the Solution of Second-Order Fuzzy Differential Equations

In this paper, existence, uniqueness, and Hyers-Ulam stability for the solution of second-order fuzzy differential equations (FDEs) are studied. To deal a physical model, it is required to insure whether unique solution of the model exists. The natural transform has the speciality to converge to bot...

Full description

Saved in:
Bibliographic Details
Main Authors: Noor Jamal, Muhammad Sarwar, M. Motawi Khashan
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/6664619
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, existence, uniqueness, and Hyers-Ulam stability for the solution of second-order fuzzy differential equations (FDEs) are studied. To deal a physical model, it is required to insure whether unique solution of the model exists. The natural transform has the speciality to converge to both Laplace and Sumudu transforms only by changing the variables. Therefore, this method plays the rule of checker on the Laplace and Sumudu transforms. We use natural transform to obtain the solution of the proposed FDEs. As applications of the established results, some nontrivial examples are provided to show the authenticity of the presented work.
ISSN:2314-8896
2314-8888