Multiscale Chebyshev Neural Network Identification and Adaptive Control for Backlash-Like Hysteresis System
An adaptive control based on a new Multiscale Chebyshev Neural Network (MSCNN) identification is proposed for the backlash-like hysteresis nonlinearity system in this paper. Firstly, a MSCNN is introduced to approximate the backlash-like nonlinearity of the system, and then, the Lyapunov theorem ass...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2018/1872493 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An adaptive control based on a new Multiscale Chebyshev Neural Network (MSCNN) identification is proposed for the backlash-like hysteresis nonlinearity system in this paper. Firstly, a MSCNN is introduced to approximate the backlash-like nonlinearity of the system, and then, the Lyapunov theorem assures the identification approach is effective. Afterward, to simplify the control design, tracking error is transformed into a scalar error with Laplace transformation. Therefore, an adaptive control strategy based on the transformed scalar error is proposed, and all the signals of the closed-loop system are uniformly ultimately bounded (UUB). Finally, simulation results have demonstrated the performance of the proposed control scheme. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |