Cooperative Detection-Oriented Formation Design and Optimization of USV Swarms via an Improved Genetic Algorithm

Efficient and adaptive formation planning is critical for unmanned surface vehicle (USV) swarms equipped with sensor networks and smart sensors to perform cooperative detection tasks in complex marine environments. Existing formation optimization methods often overlook the nonlinear coupling between...

Full description

Saved in:
Bibliographic Details
Main Authors: Rui Liang, Dingzhao Li, Haixin Sun, Liangpo Hong
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3179
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient and adaptive formation planning is critical for unmanned surface vehicle (USV) swarms equipped with sensor networks and smart sensors to perform cooperative detection tasks in complex marine environments. Existing formation optimization methods often overlook the nonlinear coupling between sensor-based detection performance, communication constraints, and obstacle avoidance. We propose a multi-objective formation optimization framework based on an improved genetic algorithm that simultaneously considers the detection coverage area, forward detection width, inter-agent communication, and static obstacle avoidance. We formulate a probabilistic cooperative detection model, introduce normalized detection efficiency indicators, and embed multiple geometric and environmental constraints into the optimization process. Simulation results show that the proposed method significantly improves the spatial efficiency of cooperative sensing, yielding a 32.76% increase in effective coverage area and 20.97% improvement in forward detection width compared to unoptimized formations. This strategy, supported by multi-sensor positioning and navigation, offers a robust and generalizable approach for intelligent maritime USV deployment in dynamic, multi-constraint scenarios.
ISSN:1424-8220