On polynomial EPr matrices

This paper gives a characterization of EPr-λ-matrices. Necessary and sufficient conditions are determined for (i) the Moore-Penrose inverse of an EPr-λ-matrix to be an EPr-λ-matrix and (ii) Moore-Penrose inverse of the product of EPr-λ-matrices to be an EPr-λ-matrix. Further, a condition for the gen...

Full description

Saved in:
Bibliographic Details
Main Authors: Ar. Meenakshi, N. Anandam
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292000334
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549331077431296
author Ar. Meenakshi
N. Anandam
author_facet Ar. Meenakshi
N. Anandam
author_sort Ar. Meenakshi
collection DOAJ
description This paper gives a characterization of EPr-λ-matrices. Necessary and sufficient conditions are determined for (i) the Moore-Penrose inverse of an EPr-λ-matrix to be an EPr-λ-matrix and (ii) Moore-Penrose inverse of the product of EPr-λ-matrices to be an EPr-λ-matrix. Further, a condition for the generalized inverse of the product of λ-matrices to be a λ-matrix is determined.
format Article
id doaj-art-c7580aa879284a05b536c300f19d9bd0
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-c7580aa879284a05b536c300f19d9bd02025-02-03T06:11:33ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115226126610.1155/S0161171292000334On polynomial EPr matricesAr. Meenakshi0N. Anandam1Department of Mathematics, Annamalai University, Annamalainagar 608 002, Tamil Nadu, IndiaDepartment of Mathematics, Annamalai University, Annamalainagar 608 002, Tamil Nadu, IndiaThis paper gives a characterization of EPr-λ-matrices. Necessary and sufficient conditions are determined for (i) the Moore-Penrose inverse of an EPr-λ-matrix to be an EPr-λ-matrix and (ii) Moore-Penrose inverse of the product of EPr-λ-matrices to be an EPr-λ-matrix. Further, a condition for the generalized inverse of the product of λ-matrices to be a λ-matrix is determined.http://dx.doi.org/10.1155/S0161171292000334EPr-λ-matricesgeneralized inverse of a matrix.
spellingShingle Ar. Meenakshi
N. Anandam
On polynomial EPr matrices
International Journal of Mathematics and Mathematical Sciences
EPr-λ-matrices
generalized inverse of a matrix.
title On polynomial EPr matrices
title_full On polynomial EPr matrices
title_fullStr On polynomial EPr matrices
title_full_unstemmed On polynomial EPr matrices
title_short On polynomial EPr matrices
title_sort on polynomial epr matrices
topic EPr-λ-matrices
generalized inverse of a matrix.
url http://dx.doi.org/10.1155/S0161171292000334
work_keys_str_mv AT armeenakshi onpolynomialeprmatrices
AT nanandam onpolynomialeprmatrices