A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data

Leaf area index (LAI) and chlorophyll content are crucial variables in photosynthesis, respiration, and transpiration, playing a vital role in monitoring vegetation stress, estimating productivity, and evaluating carbon cycling processes. Currently, physical models are widely adopted for estimating...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhanghua Xu, Chaofei Zhang, Songyang Xiang, Lingyan Chen, Xier Yu, Haitao Li, Zenglu Li, Xiaoyu Guo, Huafeng Zhang, Xuying Huang, Fengying Guan
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10818736/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592957775020032
author Zhanghua Xu
Chaofei Zhang
Songyang Xiang
Lingyan Chen
Xier Yu
Haitao Li
Zenglu Li
Xiaoyu Guo
Huafeng Zhang
Xuying Huang
Fengying Guan
author_facet Zhanghua Xu
Chaofei Zhang
Songyang Xiang
Lingyan Chen
Xier Yu
Haitao Li
Zenglu Li
Xiaoyu Guo
Huafeng Zhang
Xuying Huang
Fengying Guan
author_sort Zhanghua Xu
collection DOAJ
description Leaf area index (LAI) and chlorophyll content are crucial variables in photosynthesis, respiration, and transpiration, playing a vital role in monitoring vegetation stress, estimating productivity, and evaluating carbon cycling processes. Currently, physical models are widely adopted for estimating LAI and canopy chlorophyll content (CCC). However, the main challenges of physical model-based methods for estimating LAI and CCC are the high computational cost and the fact that different combinations of canopy variables result in similar spectral reflectance for local minima. To address this limitation, a hybrid model was proposed to invert the LAI and CCC in Moso bamboo (<italic>Phyllostachys pubescens</italic>) forests. This approach utilized the PROSAIL canopy radiation transfer model, established look-up table (LUT) for LAI and CCC, and employed the Stacking ensemble learning framework. Compared with the PROSAIL LUT method, the hybrid model demonstrated higher performance in predicting LAI and CCC by incorporating the strengths of different models within the hybrid framework. The R<sup>2</sup> values between predicted and measured values were improved by 3.28&#x0025; and 7.15&#x0025;, while the RMSE values were reduced by 19.71&#x0025; and 16.14&#x0025;, respectively. Moreover, the hybrid model based on Stacking ensemble learning achieved an 86&#x0025; reduction in running time. Therefore, the hybrid model, which integrates the PROSAIL model with the Stacking ensemble learning framework, offers a more efficient and accurate approach for remotely estimating the LAI and CCC in Moso bamboo forests. The high efficiency of this method makes it promising and suitable for application to other types of vegetation.
format Article
id doaj-art-c7339be5c2a748178bc3e447dacbe47a
institution Kabale University
issn 1939-1404
2151-1535
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
spelling doaj-art-c7339be5c2a748178bc3e447dacbe47a2025-01-21T00:00:31ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing1939-14042151-15352025-01-01183125314310.1109/JSTARS.2024.352277410818736A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI DataZhanghua Xu0https://orcid.org/0000-0001-9017-6920Chaofei Zhang1Songyang Xiang2Lingyan Chen3Xier Yu4Haitao Li5Zenglu Li6Xiaoyu Guo7Huafeng Zhang8Xuying Huang9https://orcid.org/0000-0002-6774-8174Fengying Guan10College of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaCollege of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaCollege of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaCollege of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaCollege of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaCollege of Environment and Safety Engineering and the Academy of Digital China, Fuzhou University, Fuzhou, ChinaFujian Provincial Key Laboratory of Resources and Environment Monitoring and Sustainable Management and Utilization, Sanming, ChinaFujian Provincial Key Laboratory of Resources and Environment Monitoring and Sustainable Management and Utilization, Sanming, ChinaXiamen Administration Center of Afforestation, Xiamen, ChinaInstitute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, ChinaInternational Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration, Beijing, ChinaLeaf area index (LAI) and chlorophyll content are crucial variables in photosynthesis, respiration, and transpiration, playing a vital role in monitoring vegetation stress, estimating productivity, and evaluating carbon cycling processes. Currently, physical models are widely adopted for estimating LAI and canopy chlorophyll content (CCC). However, the main challenges of physical model-based methods for estimating LAI and CCC are the high computational cost and the fact that different combinations of canopy variables result in similar spectral reflectance for local minima. To address this limitation, a hybrid model was proposed to invert the LAI and CCC in Moso bamboo (<italic>Phyllostachys pubescens</italic>) forests. This approach utilized the PROSAIL canopy radiation transfer model, established look-up table (LUT) for LAI and CCC, and employed the Stacking ensemble learning framework. Compared with the PROSAIL LUT method, the hybrid model demonstrated higher performance in predicting LAI and CCC by incorporating the strengths of different models within the hybrid framework. The R<sup>2</sup> values between predicted and measured values were improved by 3.28&#x0025; and 7.15&#x0025;, while the RMSE values were reduced by 19.71&#x0025; and 16.14&#x0025;, respectively. Moreover, the hybrid model based on Stacking ensemble learning achieved an 86&#x0025; reduction in running time. Therefore, the hybrid model, which integrates the PROSAIL model with the Stacking ensemble learning framework, offers a more efficient and accurate approach for remotely estimating the LAI and CCC in Moso bamboo forests. The high efficiency of this method makes it promising and suitable for application to other types of vegetation.https://ieeexplore.ieee.org/document/10818736/Canopy chlorophyll content (CCC)hybrid methodleaf area index (LAI)Moso bamboo forestsPROSAIL RTM
spellingShingle Zhanghua Xu
Chaofei Zhang
Songyang Xiang
Lingyan Chen
Xier Yu
Haitao Li
Zenglu Li
Xiaoyu Guo
Huafeng Zhang
Xuying Huang
Fengying Guan
A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Canopy chlorophyll content (CCC)
hybrid method
leaf area index (LAI)
Moso bamboo forests
PROSAIL RTM
title A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
title_full A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
title_fullStr A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
title_full_unstemmed A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
title_short A Hybrid Method of PROSAIL RTM for the Retrieval Canopy LAI and Chlorophyll Content of Moso Bamboo (<italic>Phyllostachys pubescens</italic>) Forests From Sentinel-2 MSI Data
title_sort hybrid method of prosail rtm for the retrieval canopy lai and chlorophyll content of moso bamboo italic phyllostachys pubescens italic forests from sentinel 2 msi data
topic Canopy chlorophyll content (CCC)
hybrid method
leaf area index (LAI)
Moso bamboo forests
PROSAIL RTM
url https://ieeexplore.ieee.org/document/10818736/
work_keys_str_mv AT zhanghuaxu ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT chaofeizhang ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT songyangxiang ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT lingyanchen ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xieryu ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT haitaoli ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT zengluli ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xiaoyuguo ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT huafengzhang ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xuyinghuang ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT fengyingguan ahybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT zhanghuaxu hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT chaofeizhang hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT songyangxiang hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT lingyanchen hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xieryu hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT haitaoli hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT zengluli hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xiaoyuguo hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT huafengzhang hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT xuyinghuang hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata
AT fengyingguan hybridmethodofprosailrtmfortheretrievalcanopylaiandchlorophyllcontentofmosobambooitalicphyllostachyspubescensitalicforestsfromsentinel2msidata