Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces

We use the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the KdV-Burgers-Kuramoto and nonlinear Schrödinger equations with constant Gaussian curvature −1. Travelling wave solutions for the above eq...

Full description

Saved in:
Bibliographic Details
Main Authors: S. M. Sayed, O. O. Elhamahmy, G. M. Gharib
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2008/576783
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563662295924736
author S. M. Sayed
O. O. Elhamahmy
G. M. Gharib
author_facet S. M. Sayed
O. O. Elhamahmy
G. M. Gharib
author_sort S. M. Sayed
collection DOAJ
description We use the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the KdV-Burgers-Kuramoto and nonlinear Schrödinger equations with constant Gaussian curvature −1. Travelling wave solutions for the above equations are obtained by using a sech-tanh method and Wu's elimination method.
format Article
id doaj-art-c6ca2c534d2c4c38ad8cdc65c6db1b01
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2008-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-c6ca2c534d2c4c38ad8cdc65c6db1b012025-02-03T01:12:59ZengWileyJournal of Applied Mathematics1110-757X1687-00422008-01-01200810.1155/2008/576783576783Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical SurfacesS. M. Sayed0O. O. Elhamahmy1G. M. Gharib2Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, EgyptMathematics Department, Faculty of Science, Suez Canal University, Ismailia, EgyptMathematics Department, Tabouk Teacher College, Tabouk University, Ministry of Higher Education, P.O. Box 1144, Tabouk, Saudi ArabiaWe use the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the KdV-Burgers-Kuramoto and nonlinear Schrödinger equations with constant Gaussian curvature −1. Travelling wave solutions for the above equations are obtained by using a sech-tanh method and Wu's elimination method.http://dx.doi.org/10.1155/2008/576783
spellingShingle S. M. Sayed
O. O. Elhamahmy
G. M. Gharib
Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
Journal of Applied Mathematics
title Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
title_full Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
title_fullStr Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
title_full_unstemmed Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
title_short Travelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
title_sort travelling wave solutions for the kdv burgers kuramoto and nonlinear schrodinger equations which describe pseudospherical surfaces
url http://dx.doi.org/10.1155/2008/576783
work_keys_str_mv AT smsayed travellingwavesolutionsforthekdvburgerskuramotoandnonlinearschrodingerequationswhichdescribepseudosphericalsurfaces
AT ooelhamahmy travellingwavesolutionsforthekdvburgerskuramotoandnonlinearschrodingerequationswhichdescribepseudosphericalsurfaces
AT gmgharib travellingwavesolutionsforthekdvburgerskuramotoandnonlinearschrodingerequationswhichdescribepseudosphericalsurfaces