RET/GFRα signals are dispensable for thymic T cell development in vivo.

Identification of thymocyte regulators is a central issue in T cell biology. Interestingly, growing evidence indicates that common key molecules control neuronal and immune cell functions. The neurotrophic factor receptor RET mediates critical functions in foetal hematopoietic subsets, thus raising...

Full description

Saved in:
Bibliographic Details
Main Authors: Afonso Rocha Martins Almeida, Sílvia Arroz-Madeira, Diogo Fonseca-Pereira, Hélder Ribeiro, Reena Lasrado, Vassilis Pachnis, Henrique Veiga-Fernandes
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0052949&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identification of thymocyte regulators is a central issue in T cell biology. Interestingly, growing evidence indicates that common key molecules control neuronal and immune cell functions. The neurotrophic factor receptor RET mediates critical functions in foetal hematopoietic subsets, thus raising the possibility that RET-related molecules may also control T cell development. We show that Ret, Gfra1 and Gfra2 are abundantly expressed by foetal and adult immature DN thymocytes. Despite the developmentally regulated expression of these genes, analysis of foetal thymi from Gfra1, Gfra2 or Ret deficient embryos revealed that these molecules are dispensable for foetal T cell development. Furthermore, analysis of RET gain of function and Ret conditional knockout mice showed that RET is also unnecessary for adult thymopoiesis. Finally, competitive thymic reconstitution assays indicated that Ret deficient thymocytes maintained their differentiation fitness even in stringent developmental conditions. Thus, our data demonstrate that RET/GFRα signals are dispensable for thymic T cell development in vivo, indicating that pharmacological targeting of RET signalling in tumours is not likely to result in T cell production failure.
ISSN:1932-6203