The integral limit theorem in the first passage problem for sums of independent nonnegative lattice variables

<p>The integral limit theorem as to the probability distribution of the random number <mml:math> <mml:msub> <mml:mi>&#x03BD;</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:math> of summands in the sum <mml:math> <mml:mstyl...

Full description

Saved in:
Bibliographic Details
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/56367
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>The integral limit theorem as to the probability distribution of the random number <mml:math> <mml:msub> <mml:mi>&#x03BD;</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:math> of summands in the sum <mml:math> <mml:mstyle displaystyle='true'> <mml:msubsup> <mml:mo>&#x2211;</mml:mo> <mml:mrow> <mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>&#x03BD;</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:msub> <mml:mi>&#x03BE;</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> </mml:mstyle> </mml:math> is proved. Here, <mml:math> <mml:msub> <mml:mi>&#x03BE;</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo><mml:msub> <mml:mi>&#x03BE;</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo><mml:mo>&#x2026;</mml:mo> </mml:math> are some nonnegative, mutually independent, lattice random variables being equally distributed and <mml:math> <mml:msub> <mml:mi>&#x03BD;</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:math> is defined by the condition that the sum value exceeds at the first time the given level <mml:math> <mml:mi>m</mml:mi><mml:mo>&#x2208;</mml:mo><mml:mi>&#x2115;</mml:mi> </mml:math> when the number of terms is equal to <mml:math> <mml:msub> <mml:mi>&#x03BD;</mml:mi> <mml:mi>m</mml:mi> </mml:msub> </mml:math>.</p>
ISSN:1085-3375