LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype

Abstract Background The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross‐talk between the immune system and insulin‐producing beta cells, has hindered the development of effective disease‐modifying therapies. The discovery that the pharmacological activation of LRH‐1/...

Full description

Saved in:
Bibliographic Details
Main Authors: Nadia Cobo‐Vuilleumier, Silvia Rodríguez‐Fernandez, Livia López‐Noriega, Petra I. Lorenzo, Jaime M. Franco, Christian C. Lachaud, Eugenia Martin Vazquez, Raquel Araujo Legido, Akaitz Dorronsoro, Raul López‐Férnandez‐Sobrino, Beatriz Fernández‐Santos, Carmen Espejo Serrano, Daniel Salas‐Lloret, Nila vanOverbeek, Mireia Ramos‐Rodriguez, Carmen Mateo‐Rodríguez, Lucia Hidalgo, Sandra Marin‐Canas, Rita Nano, Ana I. Arroba, Antonio Campos Caro, Alfred CO Vertegaal, Alejandro Martín‐Montalvo, Franz Martín, Manuel Aguilar‐Diosdado, Lorenzo Piemonti, Lorenzo Pasquali, Roman González Prieto, Maria Isabel García Sánchez, Decio L. Eizirik, Maria Asuncion Martínez‐Brocca, Marta Vives‐Pi, Benoit R. Gauthier
Format: Article
Language:English
Published: Wiley 2024-12-01
Series:Clinical and Translational Medicine
Subjects:
Online Access:https://doi.org/10.1002/ctm2.70134
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582261957984256
author Nadia Cobo‐Vuilleumier
Silvia Rodríguez‐Fernandez
Livia López‐Noriega
Petra I. Lorenzo
Jaime M. Franco
Christian C. Lachaud
Eugenia Martin Vazquez
Raquel Araujo Legido
Akaitz Dorronsoro
Raul López‐Férnandez‐Sobrino
Beatriz Fernández‐Santos
Carmen Espejo Serrano
Daniel Salas‐Lloret
Nila vanOverbeek
Mireia Ramos‐Rodriguez
Carmen Mateo‐Rodríguez
Lucia Hidalgo
Sandra Marin‐Canas
Rita Nano
Ana I. Arroba
Antonio Campos Caro
Alfred CO Vertegaal
Alejandro Martín‐Montalvo
Franz Martín
Manuel Aguilar‐Diosdado
Lorenzo Piemonti
Lorenzo Pasquali
Roman González Prieto
Maria Isabel García Sánchez
Decio L. Eizirik
Maria Asuncion Martínez‐Brocca
Marta Vives‐Pi
Benoit R. Gauthier
author_facet Nadia Cobo‐Vuilleumier
Silvia Rodríguez‐Fernandez
Livia López‐Noriega
Petra I. Lorenzo
Jaime M. Franco
Christian C. Lachaud
Eugenia Martin Vazquez
Raquel Araujo Legido
Akaitz Dorronsoro
Raul López‐Férnandez‐Sobrino
Beatriz Fernández‐Santos
Carmen Espejo Serrano
Daniel Salas‐Lloret
Nila vanOverbeek
Mireia Ramos‐Rodriguez
Carmen Mateo‐Rodríguez
Lucia Hidalgo
Sandra Marin‐Canas
Rita Nano
Ana I. Arroba
Antonio Campos Caro
Alfred CO Vertegaal
Alejandro Martín‐Montalvo
Franz Martín
Manuel Aguilar‐Diosdado
Lorenzo Piemonti
Lorenzo Pasquali
Roman González Prieto
Maria Isabel García Sánchez
Decio L. Eizirik
Maria Asuncion Martínez‐Brocca
Marta Vives‐Pi
Benoit R. Gauthier
author_sort Nadia Cobo‐Vuilleumier
collection DOAJ
description Abstract Background The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross‐talk between the immune system and insulin‐producing beta cells, has hindered the development of effective disease‐modifying therapies. The discovery that the pharmacological activation of LRH‐1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH‐1/NR5A2 activation and improve islet survival. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH‐1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T‐cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001‐target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co‐cultures of PBMCs and iPSCs‐derived islet organoids were performed to assess the impact of BL001 on beta cell viability. Results LRH‐1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro‐inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro‐inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro‐inflammatory to an anti‐inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T‐cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T‐cells and Th2 cells within PBMCs while decreasing CD8+ T‐cell proliferation. Additionally, BL001 alleviated PBMC‐induced apoptosis and maintained insulin expression in human iPSC‐derived islet organoids. Conclusion These findings demonstrate the potential of LRH‐1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. Key Points LRH‐1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro‐inflammatory cell surface markers and cytokine release. LRH‐1/NR5A2 promotes a mitohormesis‐induced immuno‐resistant phenotype to pro‐inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH‐1/NR5A2‐stimulated mitochondria turnover. LRH‐1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T‐cell subpopulation. Pharmacological activation of LRH‐1/NR5A2 improves the survival iPSC‐islets‐like organoids co‐cultured with PBMCs from individuals with T1D.
format Article
id doaj-art-c5769c438c404765859eb6683cbbb639
institution Kabale University
issn 2001-1326
language English
publishDate 2024-12-01
publisher Wiley
record_format Article
series Clinical and Translational Medicine
spelling doaj-art-c5769c438c404765859eb6683cbbb6392025-01-30T03:56:55ZengWileyClinical and Translational Medicine2001-13262024-12-011412n/an/a10.1002/ctm2.70134LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotypeNadia Cobo‐Vuilleumier0Silvia Rodríguez‐Fernandez1Livia López‐Noriega2Petra I. Lorenzo3Jaime M. Franco4Christian C. Lachaud5Eugenia Martin Vazquez6Raquel Araujo Legido7Akaitz Dorronsoro8Raul López‐Férnandez‐Sobrino9Beatriz Fernández‐Santos10Carmen Espejo Serrano11Daniel Salas‐Lloret12Nila vanOverbeek13Mireia Ramos‐Rodriguez14Carmen Mateo‐Rodríguez15Lucia Hidalgo16Sandra Marin‐Canas17Rita Nano18Ana I. Arroba19Antonio Campos Caro20Alfred CO Vertegaal21Alejandro Martín‐Montalvo22Franz Martín23Manuel Aguilar‐Diosdado24Lorenzo Piemonti25Lorenzo Pasquali26Roman González Prieto27Maria Isabel García Sánchez28Decio L. Eizirik29Maria Asuncion Martínez‐Brocca30Marta Vives‐Pi31Benoit R. Gauthier32Andalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainImmunology Department Germans Trias i Pujol Research Institute Autonomous University of Barcelona Badalona SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainCell and Chemical Biology Leiden University Medical Centre Leiden The NetherlandsCell and Chemical Biology Leiden University Medical Centre Leiden The NetherlandsPompeu Fabra University Barcelona SpainDepartment of Endocrinology and Nutrition University Hospital Virgen Macarena Sevilla SpainDepartment of Endocrinology and Nutrition University Hospital Virgen Macarena Sevilla SpainULB Center for Diabetes Research Medical Faculty Université Libre de Bruxelles (ULB) Brussels BelgiumDiabetes Research Institute IRCCS Ospedale San Raffaele Milan ItalyDepartment of Endocrinology and Nutrition University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA) Cádiz SpainDepartment of Endocrinology and Nutrition University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA) Cádiz SpainCell and Chemical Biology Leiden University Medical Centre Leiden The NetherlandsAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainDepartment of Endocrinology and Nutrition University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA) Cádiz SpainDiabetes Research Institute IRCCS Ospedale San Raffaele Milan ItalyPompeu Fabra University Barcelona SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainBiobank of the Andalusian Public Health System Node Hospital Virgen Macarena Sevilla SpainULB Center for Diabetes Research Medical Faculty Université Libre de Bruxelles (ULB) Brussels BelgiumDepartment of Endocrinology and Nutrition University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA) Cádiz SpainImmunology Department Germans Trias i Pujol Research Institute Autonomous University of Barcelona Badalona SpainAndalusian Center of Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville SpainAbstract Background The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross‐talk between the immune system and insulin‐producing beta cells, has hindered the development of effective disease‐modifying therapies. The discovery that the pharmacological activation of LRH‐1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH‐1/NR5A2 activation and improve islet survival. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH‐1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T‐cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001‐target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co‐cultures of PBMCs and iPSCs‐derived islet organoids were performed to assess the impact of BL001 on beta cell viability. Results LRH‐1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro‐inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro‐inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro‐inflammatory to an anti‐inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T‐cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T‐cells and Th2 cells within PBMCs while decreasing CD8+ T‐cell proliferation. Additionally, BL001 alleviated PBMC‐induced apoptosis and maintained insulin expression in human iPSC‐derived islet organoids. Conclusion These findings demonstrate the potential of LRH‐1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. Key Points LRH‐1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro‐inflammatory cell surface markers and cytokine release. LRH‐1/NR5A2 promotes a mitohormesis‐induced immuno‐resistant phenotype to pro‐inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH‐1/NR5A2‐stimulated mitochondria turnover. LRH‐1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T‐cell subpopulation. Pharmacological activation of LRH‐1/NR5A2 improves the survival iPSC‐islets‐like organoids co‐cultured with PBMCs from individuals with T1D.https://doi.org/10.1002/ctm2.70134autoimmune diseasesdrug developmentimmune tolerancepancreatic islets
spellingShingle Nadia Cobo‐Vuilleumier
Silvia Rodríguez‐Fernandez
Livia López‐Noriega
Petra I. Lorenzo
Jaime M. Franco
Christian C. Lachaud
Eugenia Martin Vazquez
Raquel Araujo Legido
Akaitz Dorronsoro
Raul López‐Férnandez‐Sobrino
Beatriz Fernández‐Santos
Carmen Espejo Serrano
Daniel Salas‐Lloret
Nila vanOverbeek
Mireia Ramos‐Rodriguez
Carmen Mateo‐Rodríguez
Lucia Hidalgo
Sandra Marin‐Canas
Rita Nano
Ana I. Arroba
Antonio Campos Caro
Alfred CO Vertegaal
Alejandro Martín‐Montalvo
Franz Martín
Manuel Aguilar‐Diosdado
Lorenzo Piemonti
Lorenzo Pasquali
Roman González Prieto
Maria Isabel García Sánchez
Decio L. Eizirik
Maria Asuncion Martínez‐Brocca
Marta Vives‐Pi
Benoit R. Gauthier
LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
Clinical and Translational Medicine
autoimmune diseases
drug development
immune tolerance
pancreatic islets
title LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
title_full LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
title_fullStr LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
title_full_unstemmed LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
title_short LRH‐1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
title_sort lrh 1 nr5a2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype
topic autoimmune diseases
drug development
immune tolerance
pancreatic islets
url https://doi.org/10.1002/ctm2.70134
work_keys_str_mv AT nadiacobovuilleumier lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT silviarodriguezfernandez lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT livialopeznoriega lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT petrailorenzo lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT jaimemfranco lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT christianclachaud lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT eugeniamartinvazquez lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT raquelaraujolegido lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT akaitzdorronsoro lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT raullopezfernandezsobrino lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT beatrizfernandezsantos lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT carmenespejoserrano lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT danielsalaslloret lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT nilavanoverbeek lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT mireiaramosrodriguez lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT carmenmateorodriguez lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT luciahidalgo lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT sandramarincanas lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT ritanano lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT anaiarroba lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT antoniocamposcaro lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT alfredcovertegaal lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT alejandromartinmontalvo lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT franzmartin lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT manuelaguilardiosdado lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT lorenzopiemonti lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT lorenzopasquali lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT romangonzalezprieto lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT mariaisabelgarciasanchez lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT decioleizirik lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT mariaasuncionmartinezbrocca lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT martavivespi lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype
AT benoitrgauthier lrh1nr5a2targetsmitochondrialdynamicstoreprogramtype1diabetesmacrophagesanddendriticcellsintoanimmunetolerancephenotype