Integral operators in the theory of induced Banach representation II. The bundle approach

Let G be a locally compact group, H a closed subgroup and L a Banach representation of H. Suppose U is a Banach representation of G which is induced by L. Here, we continue our program of showing that certain operators of the integrated form of U can be written as integral operators with continuous...

Full description

Saved in:
Bibliographic Details
Main Author: I. E. Schochetman
Format: Article
Language:English
Published: Wiley 1981-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117128100046X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let G be a locally compact group, H a closed subgroup and L a Banach representation of H. Suppose U is a Banach representation of G which is induced by L. Here, we continue our program of showing that certain operators of the integrated form of U can be written as integral operators with continuous kernels. Specifically, we show that: (1) the representation space of a Banach bundle; (2) the above operators become integral operators on this space with kernels which are continuous cross-sections of an associated kernel bundle.
ISSN:0161-1712
1687-0425