A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
Abstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, su...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-025-56225-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832585594266451968 |
---|---|
author | Tao Jia Tao Lin Yang Yang Lunbi Wu Huimin Cai Zesheng Zhang Kangfeng Lin Yulong Hai Yongmin Luo Ruijie Ma Yao Li Top Archie Dela Peña Sha Liu Jie Zhang Chunchen Liu Junwu Chen Jiaying Wu Shengjian Liu Fei Huang |
author_facet | Tao Jia Tao Lin Yang Yang Lunbi Wu Huimin Cai Zesheng Zhang Kangfeng Lin Yulong Hai Yongmin Luo Ruijie Ma Yao Li Top Archie Dela Peña Sha Liu Jie Zhang Chunchen Liu Junwu Chen Jiaying Wu Shengjian Liu Fei Huang |
author_sort | Tao Jia |
collection | DOAJ |
description | Abstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%. The dendritic acceptor Six-IC exhibits modulated crystallinity and miscibility with the donor, thus better morphology performance compared to its monomer, DTC8. Its charge transport ability is further enhanced by additional channels between the armed units. Consequently, the binary OSCs based on D18:Six-IC achieves a cutting-edge efficiency of 19.4% for high-molecular weight acceptor based systems, as well as decent device stability and film ductility. This work reports high-performance OSCs based on dendritic molecule acceptor with a molecular weight exceeding 10000 g/mol and shares the understanding for designing comprehensively high-performing acceptor materials. |
format | Article |
id | doaj-art-c5265ae93b994bc48f37462656816d70 |
institution | Kabale University |
issn | 2041-1723 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj-art-c5265ae93b994bc48f37462656816d702025-01-26T12:40:27ZengNature PortfolioNature Communications2041-17232025-01-0116111210.1038/s41467-025-56225-xA dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cellsTao Jia0Tao Lin1Yang Yang2Lunbi Wu3Huimin Cai4Zesheng Zhang5Kangfeng Lin6Yulong Hai7Yongmin Luo8Ruijie Ma9Yao Li10Top Archie Dela Peña11Sha Liu12Jie Zhang13Chunchen Liu14Junwu Chen15Jiaying Wu16Shengjian Liu17Fei Huang18School of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversityInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversityAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic UniversityAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay UniversityInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU)Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyAbstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%. The dendritic acceptor Six-IC exhibits modulated crystallinity and miscibility with the donor, thus better morphology performance compared to its monomer, DTC8. Its charge transport ability is further enhanced by additional channels between the armed units. Consequently, the binary OSCs based on D18:Six-IC achieves a cutting-edge efficiency of 19.4% for high-molecular weight acceptor based systems, as well as decent device stability and film ductility. This work reports high-performance OSCs based on dendritic molecule acceptor with a molecular weight exceeding 10000 g/mol and shares the understanding for designing comprehensively high-performing acceptor materials.https://doi.org/10.1038/s41467-025-56225-x |
spellingShingle | Tao Jia Tao Lin Yang Yang Lunbi Wu Huimin Cai Zesheng Zhang Kangfeng Lin Yulong Hai Yongmin Luo Ruijie Ma Yao Li Top Archie Dela Peña Sha Liu Jie Zhang Chunchen Liu Junwu Chen Jiaying Wu Shengjian Liu Fei Huang A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells Nature Communications |
title | A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells |
title_full | A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells |
title_fullStr | A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells |
title_full_unstemmed | A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells |
title_short | A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells |
title_sort | dendritic hexamer acceptor enables 19 4 efficiency with exceptional stability in organic solar cells |
url | https://doi.org/10.1038/s41467-025-56225-x |
work_keys_str_mv | AT taojia adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT taolin adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yangyang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT lunbiwu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT huimincai adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT zeshengzhang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT kangfenglin adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yulonghai adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yongminluo adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT ruijiema adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yaoli adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT toparchiedelapena adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT shaliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT jiezhang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT chunchenliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT junwuchen adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT jiayingwu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT shengjianliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT feihuang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT taojia dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT taolin dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yangyang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT lunbiwu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT huimincai dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT zeshengzhang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT kangfenglin dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yulonghai dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yongminluo dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT ruijiema dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT yaoli dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT toparchiedelapena dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT shaliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT jiezhang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT chunchenliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT junwuchen dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT jiayingwu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT shengjianliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells AT feihuang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells |