A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells

Abstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, su...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Jia, Tao Lin, Yang Yang, Lunbi Wu, Huimin Cai, Zesheng Zhang, Kangfeng Lin, Yulong Hai, Yongmin Luo, Ruijie Ma, Yao Li, Top Archie Dela Peña, Sha Liu, Jie Zhang, Chunchen Liu, Junwu Chen, Jiaying Wu, Shengjian Liu, Fei Huang
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56225-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585594266451968
author Tao Jia
Tao Lin
Yang Yang
Lunbi Wu
Huimin Cai
Zesheng Zhang
Kangfeng Lin
Yulong Hai
Yongmin Luo
Ruijie Ma
Yao Li
Top Archie Dela Peña
Sha Liu
Jie Zhang
Chunchen Liu
Junwu Chen
Jiaying Wu
Shengjian Liu
Fei Huang
author_facet Tao Jia
Tao Lin
Yang Yang
Lunbi Wu
Huimin Cai
Zesheng Zhang
Kangfeng Lin
Yulong Hai
Yongmin Luo
Ruijie Ma
Yao Li
Top Archie Dela Peña
Sha Liu
Jie Zhang
Chunchen Liu
Junwu Chen
Jiaying Wu
Shengjian Liu
Fei Huang
author_sort Tao Jia
collection DOAJ
description Abstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%. The dendritic acceptor Six-IC exhibits modulated crystallinity and miscibility with the donor, thus better morphology performance compared to its monomer, DTC8. Its charge transport ability is further enhanced by additional channels between the armed units. Consequently, the binary OSCs based on D18:Six-IC achieves a cutting-edge efficiency of 19.4% for high-molecular weight acceptor based systems, as well as decent device stability and film ductility. This work reports high-performance OSCs based on dendritic molecule acceptor with a molecular weight exceeding 10000 g/mol and shares the understanding for designing comprehensively high-performing acceptor materials.
format Article
id doaj-art-c5265ae93b994bc48f37462656816d70
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-c5265ae93b994bc48f37462656816d702025-01-26T12:40:27ZengNature PortfolioNature Communications2041-17232025-01-0116111210.1038/s41467-025-56225-xA dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cellsTao Jia0Tao Lin1Yang Yang2Lunbi Wu3Huimin Cai4Zesheng Zhang5Kangfeng Lin6Yulong Hai7Yongmin Luo8Ruijie Ma9Yao Li10Top Archie Dela Peña11Sha Liu12Jie Zhang13Chunchen Liu14Junwu Chen15Jiaying Wu16Shengjian Liu17Fei Huang18School of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversitySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversityInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologySchool of Optoelectronic Engineering, Guangdong Polytechnic Normal UniversityAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic UniversityAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay UniversityInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyAdvanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou)School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Electronic Chemicals for Integrated Circuit Packaging, South China Normal University (SCNU)Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyAbstract To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%. The dendritic acceptor Six-IC exhibits modulated crystallinity and miscibility with the donor, thus better morphology performance compared to its monomer, DTC8. Its charge transport ability is further enhanced by additional channels between the armed units. Consequently, the binary OSCs based on D18:Six-IC achieves a cutting-edge efficiency of 19.4% for high-molecular weight acceptor based systems, as well as decent device stability and film ductility. This work reports high-performance OSCs based on dendritic molecule acceptor with a molecular weight exceeding 10000 g/mol and shares the understanding for designing comprehensively high-performing acceptor materials.https://doi.org/10.1038/s41467-025-56225-x
spellingShingle Tao Jia
Tao Lin
Yang Yang
Lunbi Wu
Huimin Cai
Zesheng Zhang
Kangfeng Lin
Yulong Hai
Yongmin Luo
Ruijie Ma
Yao Li
Top Archie Dela Peña
Sha Liu
Jie Zhang
Chunchen Liu
Junwu Chen
Jiaying Wu
Shengjian Liu
Fei Huang
A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
Nature Communications
title A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
title_full A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
title_fullStr A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
title_full_unstemmed A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
title_short A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells
title_sort dendritic hexamer acceptor enables 19 4 efficiency with exceptional stability in organic solar cells
url https://doi.org/10.1038/s41467-025-56225-x
work_keys_str_mv AT taojia adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT taolin adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yangyang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT lunbiwu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT huimincai adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT zeshengzhang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT kangfenglin adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yulonghai adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yongminluo adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT ruijiema adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yaoli adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT toparchiedelapena adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT shaliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT jiezhang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT chunchenliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT junwuchen adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT jiayingwu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT shengjianliu adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT feihuang adendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT taojia dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT taolin dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yangyang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT lunbiwu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT huimincai dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT zeshengzhang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT kangfenglin dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yulonghai dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yongminluo dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT ruijiema dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT yaoli dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT toparchiedelapena dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT shaliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT jiezhang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT chunchenliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT junwuchen dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT jiayingwu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT shengjianliu dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells
AT feihuang dendritichexameracceptorenables194efficiencywithexceptionalstabilityinorganicsolarcells