An Updated Analytical Structural Pounding Force Model Based on Viscoelasticity of Materials

Based on the summary of existing pounding force analytical models, an updated pounding force analysis method is proposed by introducing viscoelastic constitutive model and contact mechanics method. Traditional Kelvin viscoelastic pounding force model can be expanded to 3-parameter linear viscoelasti...

Full description

Saved in:
Bibliographic Details
Main Authors: Qichao Xue, Chunwei Zhang, Jian He, Guangping Zou, Jingcai Zhang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/2596923
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the summary of existing pounding force analytical models, an updated pounding force analysis method is proposed by introducing viscoelastic constitutive model and contact mechanics method. Traditional Kelvin viscoelastic pounding force model can be expanded to 3-parameter linear viscoelastic model by separating classic pounding model parameters into geometry parameters and viscoelastic material parameters. Two existing pounding examples, the poundings of steel-to-steel and concrete-to-concrete, are recalculated by utilizing the proposed method. Afterwards, the calculation results are compared with other pounding force models. The results show certain accuracy in proposed model. The relative normalized errors of steel-to-steel and concrete-to-concrete experiments are 19.8% and 12.5%, respectively. Furthermore, a steel-to-polymer pounding example is calculated, and the application of the proposed method in vibration control analysis for pounding tuned mass damper (TMD) is simulated consequently. However, due to insufficient experiment details, the proposed model can only give a rough trend for both single pounding process and vibration control process. Regardless of the cheerful prospect, the study in this paper is only the first step of pounding force calculation. It still needs a more careful assessment of the model performance, especially in the presence of inelastic response.
ISSN:1070-9622
1875-9203