Effect of Pore Size on the Biodegradation Rate of Silk Fibroin Scaffolds
Controlling the degradation rate of silk fibroin-based biomaterial is an important capability for the fabrication of silk-based tissue engineering scaffolds. In this study, scaffolds with different pore sizes were prepared by controlling the freezing temperature and the silk fibroin concentration. I...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2015/315397 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Controlling the degradation rate of silk fibroin-based biomaterial is an important capability for the fabrication of silk-based tissue engineering scaffolds. In this study, scaffolds with different pore sizes were prepared by controlling the freezing temperature and the silk fibroin concentration. In vitro degradation results showed that the internal pore walls of the scaffolds with a larger pore size collapsed upon exposure to collagenase IA for times ranging from 6 to 12 days, and the silk scaffolds exhibited a faster rate of weight loss. The morphological and structural features of the silk scaffolds with a smaller pore size maintained structural integrity after incubation in the protease solution for 18 days, and the rate of weight loss was relatively slow. Scaffolds with a smaller pore size or a higher pore density degraded more slowly than scaffolds with a larger pore size or lower pore density. These results demonstrate that the pore size of silk biomaterials is crucial in controlling the degradation rate of tissue engineering scaffolds. |
---|---|
ISSN: | 1687-8434 1687-8442 |