Visualization of Gas Diffusion-Sorption in Coal: A Study Based on Synchrotron Radiation Nano-CT
Gas diffusion-sorption is a critical step in coalbed methane (CBM) exploitation and carbon dioxide sequestration. Because of the particularity of gas physical properties, it is difficult to visualize the gas diffusion-sorption process in coal by experimental methods. Due to the limitation of experim...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2020/8835848 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gas diffusion-sorption is a critical step in coalbed methane (CBM) exploitation and carbon dioxide sequestration. Because of the particularity of gas physical properties, it is difficult to visualize the gas diffusion-sorption process in coal by experimental methods. Due to the limitation of experimental approaches to image the three-dimensional coal pore structure, it is impossible to obtain the three-dimensional pore structure images of coal. As a result, the visualization of gas diffusion-sorption in coal pore structure by numerical ways is impossible. In this study, gas diffusion coefficients were firstly estimated by experiments. Then, a gas diffusion-sorption coupled model was developed which can be applied to the nanoscale geometry imaged by synchrotron radiation nano-CT. The dynamic process of gas diffusion and ad-/desorption in the nanoscale microstructure of coal was visualized by the developed gas diffusion-adsorption coupled model and the numerical simulation based on MATLAB. The simulation results show a good agreement with the experimental results. The gas diffusion-sorption coupled model and numerical method can help to investigate the effect of microstructure on gas diffusion and ad-/desorption and provides a possibility to investigate the multiscale gas transportation and adsorption in coal pore-fracture system. |
---|---|
ISSN: | 1468-8115 1468-8123 |