Tauberian conditions for Conull spaces

The typical Tauberian theorem asserts that a particular summability method cannot map any divergent member of a given set of sequences into a convergent sequence. These sets of sequences are typically defined by an order growth or gap condition. We establish that any conull space contains a bounded...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Connor, A. K. Snyder
Format: Article
Language:English
Published: Wiley 1985-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117128500076X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554453157281792
author J. Connor
A. K. Snyder
author_facet J. Connor
A. K. Snyder
author_sort J. Connor
collection DOAJ
description The typical Tauberian theorem asserts that a particular summability method cannot map any divergent member of a given set of sequences into a convergent sequence. These sets of sequences are typically defined by an order growth or gap condition. We establish that any conull space contains a bounded divergent member of such a set; hence, such sets fail to generate Tauberian theorems for conull spaces.
format Article
id doaj-art-c3f2f13350bc4c2784688f98ded5de15
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1985-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-c3f2f13350bc4c2784688f98ded5de152025-02-03T05:51:33ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251985-01-018468969210.1155/S016117128500076XTauberian conditions for Conull spacesJ. Connor0A. K. Snyder1Department of Mathematical Sciences, Kent State University, Kent 44242, Ohio, USADepartment of Mathematics, Lehigh University, Bethlehem 18015, PA, USAThe typical Tauberian theorem asserts that a particular summability method cannot map any divergent member of a given set of sequences into a convergent sequence. These sets of sequences are typically defined by an order growth or gap condition. We establish that any conull space contains a bounded divergent member of such a set; hence, such sets fail to generate Tauberian theorems for conull spaces.http://dx.doi.org/10.1155/S016117128500076XFK space; conull.
spellingShingle J. Connor
A. K. Snyder
Tauberian conditions for Conull spaces
International Journal of Mathematics and Mathematical Sciences
FK space; conull.
title Tauberian conditions for Conull spaces
title_full Tauberian conditions for Conull spaces
title_fullStr Tauberian conditions for Conull spaces
title_full_unstemmed Tauberian conditions for Conull spaces
title_short Tauberian conditions for Conull spaces
title_sort tauberian conditions for conull spaces
topic FK space; conull.
url http://dx.doi.org/10.1155/S016117128500076X
work_keys_str_mv AT jconnor tauberianconditionsforconullspaces
AT aksnyder tauberianconditionsforconullspaces