Intricacies of human–AI interaction in dynamic decision-making for precision oncology

Abstract AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals’ cancer progression for effective personalized care. However, AI’s imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI....

Full description

Saved in:
Bibliographic Details
Main Authors: Dipesh Niraula, Kyle C. Cuneo, Ivo D. Dinov, Brian D. Gonzalez, Jamalina B. Jamaluddin, Jionghua Judy Jin, Yi Luo, Martha M. Matuszak, Randall K. Ten Haken, Alex K. Bryant, Thomas J. Dilling, Michael P. Dykstra, Jessica M. Frakes, Casey L. Liveringhouse, Sean R. Miller, Matthew N. Mills, Russell F. Palm, Samuel N. Regan, Anupam Rishi, Javier F. Torres-Roca, Hsiang-Hsuan Michael Yu, Issam El Naqa
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55259-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571544737415168
author Dipesh Niraula
Kyle C. Cuneo
Ivo D. Dinov
Brian D. Gonzalez
Jamalina B. Jamaluddin
Jionghua Judy Jin
Yi Luo
Martha M. Matuszak
Randall K. Ten Haken
Alex K. Bryant
Thomas J. Dilling
Michael P. Dykstra
Jessica M. Frakes
Casey L. Liveringhouse
Sean R. Miller
Matthew N. Mills
Russell F. Palm
Samuel N. Regan
Anupam Rishi
Javier F. Torres-Roca
Hsiang-Hsuan Michael Yu
Issam El Naqa
author_facet Dipesh Niraula
Kyle C. Cuneo
Ivo D. Dinov
Brian D. Gonzalez
Jamalina B. Jamaluddin
Jionghua Judy Jin
Yi Luo
Martha M. Matuszak
Randall K. Ten Haken
Alex K. Bryant
Thomas J. Dilling
Michael P. Dykstra
Jessica M. Frakes
Casey L. Liveringhouse
Sean R. Miller
Matthew N. Mills
Russell F. Palm
Samuel N. Regan
Anupam Rishi
Javier F. Torres-Roca
Hsiang-Hsuan Michael Yu
Issam El Naqa
author_sort Dipesh Niraula
collection DOAJ
description Abstract AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals’ cancer progression for effective personalized care. However, AI’s imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human–AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma. We investigated two levels of collaborative behavior: model-agnostic and model-specific; and found that Human–AI interaction is multifactorial and depends on the complex interrelationship between prior knowledge and preferences, patient’s state, disease site, treatment modality, model transparency, and AI’s learned behavior and biases. In summary, some clinicians may disregard AI recommendations due to skepticism; others will critically analyze AI recommendations on a case-by-case basis; clinicians will adjust their decisions if they find AI recommendations beneficial to patients; and clinician will disregard AI recommendations if deemed harmful or suboptimal and seek alternatives.
format Article
id doaj-art-c3e69f7c45664848a67f3543fa0641a0
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-c3e69f7c45664848a67f3543fa0641a02025-02-02T12:33:30ZengNature PortfolioNature Communications2041-17232025-01-0116111910.1038/s41467-024-55259-xIntricacies of human–AI interaction in dynamic decision-making for precision oncologyDipesh Niraula0Kyle C. Cuneo1Ivo D. Dinov2Brian D. Gonzalez3Jamalina B. Jamaluddin4Jionghua Judy Jin5Yi Luo6Martha M. Matuszak7Randall K. Ten Haken8Alex K. Bryant9Thomas J. Dilling10Michael P. Dykstra11Jessica M. Frakes12Casey L. Liveringhouse13Sean R. Miller14Matthew N. Mills15Russell F. Palm16Samuel N. Regan17Anupam Rishi18Javier F. Torres-Roca19Hsiang-Hsuan Michael Yu20Issam El Naqa21Department of Machine Learning, Moffitt Cancer CenterDepartment of Radiation Oncology, University of MichiganDepartment of Health Behavior and Biological Sciences, University of MichiganDepartment of Health Outcomes and Behavior, Moffitt Cancer CenterDepartment of Nuclear Engineering and Radiological Sciences, Moffitt Cancer CenterDepartment of Industrial and Operations Engineering, University of MichiganDepartment of Machine Learning, Moffitt Cancer CenterDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, University of MichiganDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Radiation Oncology, H. Lee Moffitt Cancer Center & Research InstituteDepartment of Machine Learning, Moffitt Cancer CenterAbstract AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals’ cancer progression for effective personalized care. However, AI’s imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human–AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma. We investigated two levels of collaborative behavior: model-agnostic and model-specific; and found that Human–AI interaction is multifactorial and depends on the complex interrelationship between prior knowledge and preferences, patient’s state, disease site, treatment modality, model transparency, and AI’s learned behavior and biases. In summary, some clinicians may disregard AI recommendations due to skepticism; others will critically analyze AI recommendations on a case-by-case basis; clinicians will adjust their decisions if they find AI recommendations beneficial to patients; and clinician will disregard AI recommendations if deemed harmful or suboptimal and seek alternatives.https://doi.org/10.1038/s41467-024-55259-x
spellingShingle Dipesh Niraula
Kyle C. Cuneo
Ivo D. Dinov
Brian D. Gonzalez
Jamalina B. Jamaluddin
Jionghua Judy Jin
Yi Luo
Martha M. Matuszak
Randall K. Ten Haken
Alex K. Bryant
Thomas J. Dilling
Michael P. Dykstra
Jessica M. Frakes
Casey L. Liveringhouse
Sean R. Miller
Matthew N. Mills
Russell F. Palm
Samuel N. Regan
Anupam Rishi
Javier F. Torres-Roca
Hsiang-Hsuan Michael Yu
Issam El Naqa
Intricacies of human–AI interaction in dynamic decision-making for precision oncology
Nature Communications
title Intricacies of human–AI interaction in dynamic decision-making for precision oncology
title_full Intricacies of human–AI interaction in dynamic decision-making for precision oncology
title_fullStr Intricacies of human–AI interaction in dynamic decision-making for precision oncology
title_full_unstemmed Intricacies of human–AI interaction in dynamic decision-making for precision oncology
title_short Intricacies of human–AI interaction in dynamic decision-making for precision oncology
title_sort intricacies of human ai interaction in dynamic decision making for precision oncology
url https://doi.org/10.1038/s41467-024-55259-x
work_keys_str_mv AT dipeshniraula intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT kyleccuneo intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT ivoddinov intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT briandgonzalez intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT jamalinabjamaluddin intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT jionghuajudyjin intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT yiluo intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT marthammatuszak intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT randallktenhaken intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT alexkbryant intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT thomasjdilling intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT michaelpdykstra intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT jessicamfrakes intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT caseylliveringhouse intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT seanrmiller intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT matthewnmills intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT russellfpalm intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT samuelnregan intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT anupamrishi intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT javierftorresroca intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT hsianghsuanmichaelyu intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology
AT issamelnaqa intricaciesofhumanaiinteractionindynamicdecisionmakingforprecisiononcology