Universally catenarian domains of D+M type, II
Let T be a domain of the form K+M, where K is a field and M is a maximal ideal of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is universally catenarian. Consequently,...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1991-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171291000212 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554732191744000 |
---|---|
author | David E. Dobbs Marco Fontana |
author_facet | David E. Dobbs Marco Fontana |
author_sort | David E. Dobbs |
collection | DOAJ |
description | Let T be a domain of the form K+M, where K is a field and M is a maximal ideal
of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is
universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is
universally catenarian. Consequently, T is universally catenarian if R is either Noetherian or a
going-down domain. A key tool establishes that universally going-between holds for any domain
which is module-finite over a universally catenarian domain. |
format | Article |
id | doaj-art-c3e3e02af11944d0805eff815d5808e1 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1991-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-c3e3e02af11944d0805eff815d5808e12025-02-03T05:50:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251991-01-0114220921410.1155/S0161171291000212Universally catenarian domains of D+M type, IIDavid E. Dobbs0Marco Fontana1Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USADipartimento di Matematica, Universita di Roma, “La Sapienza”, Roma 00185, ItalyLet T be a domain of the form K+M, where K is a field and M is a maximal ideal of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is universally catenarian. Consequently, T is universally catenarian if R is either Noetherian or a going-down domain. A key tool establishes that universally going-between holds for any domain which is module-finite over a universally catenarian domain.http://dx.doi.org/10.1155/S0161171291000212universally catenariangoing betweenaltitude formula. |
spellingShingle | David E. Dobbs Marco Fontana Universally catenarian domains of D+M type, II International Journal of Mathematics and Mathematical Sciences universally catenarian going between altitude formula. |
title | Universally catenarian domains of D+M type, II |
title_full | Universally catenarian domains of D+M type, II |
title_fullStr | Universally catenarian domains of D+M type, II |
title_full_unstemmed | Universally catenarian domains of D+M type, II |
title_short | Universally catenarian domains of D+M type, II |
title_sort | universally catenarian domains of d m type ii |
topic | universally catenarian going between altitude formula. |
url | http://dx.doi.org/10.1155/S0161171291000212 |
work_keys_str_mv | AT davidedobbs universallycatenariandomainsofdmtypeii AT marcofontana universallycatenariandomainsofdmtypeii |