Universally catenarian domains of D+M type, II

Let T be a domain of the form K+M, where K is a field and M is a maximal ideal of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is universally catenarian. Consequently,...

Full description

Saved in:
Bibliographic Details
Main Authors: David E. Dobbs, Marco Fontana
Format: Article
Language:English
Published: Wiley 1991-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171291000212
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554732191744000
author David E. Dobbs
Marco Fontana
author_facet David E. Dobbs
Marco Fontana
author_sort David E. Dobbs
collection DOAJ
description Let T be a domain of the form K+M, where K is a field and M is a maximal ideal of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is universally catenarian. Consequently, T is universally catenarian if R is either Noetherian or a going-down domain. A key tool establishes that universally going-between holds for any domain which is module-finite over a universally catenarian domain.
format Article
id doaj-art-c3e3e02af11944d0805eff815d5808e1
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1991-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-c3e3e02af11944d0805eff815d5808e12025-02-03T05:50:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251991-01-0114220921410.1155/S0161171291000212Universally catenarian domains of D+M type, IIDavid E. Dobbs0Marco Fontana1Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USADipartimento di Matematica, Universita di Roma, “La Sapienza”, Roma 00185, ItalyLet T be a domain of the form K+M, where K is a field and M is a maximal ideal of T. Let D be a subring of K such that R=D+M is universally catenarian. Then D is universally catenarian and K is algebraic over k, the quotient field of D. If [K:k]<∞, then T is universally catenarian. Consequently, T is universally catenarian if R is either Noetherian or a going-down domain. A key tool establishes that universally going-between holds for any domain which is module-finite over a universally catenarian domain.http://dx.doi.org/10.1155/S0161171291000212universally catenariangoing betweenaltitude formula.
spellingShingle David E. Dobbs
Marco Fontana
Universally catenarian domains of D+M type, II
International Journal of Mathematics and Mathematical Sciences
universally catenarian
going between
altitude formula.
title Universally catenarian domains of D+M type, II
title_full Universally catenarian domains of D+M type, II
title_fullStr Universally catenarian domains of D+M type, II
title_full_unstemmed Universally catenarian domains of D+M type, II
title_short Universally catenarian domains of D+M type, II
title_sort universally catenarian domains of d m type ii
topic universally catenarian
going between
altitude formula.
url http://dx.doi.org/10.1155/S0161171291000212
work_keys_str_mv AT davidedobbs universallycatenariandomainsofdmtypeii
AT marcofontana universallycatenariandomainsofdmtypeii