Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays
This paper deals with the problem of robust exponential stability and H∞ performance analysis for a class of uncertain Markovian jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for the addressed system are derived. At last...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/738318 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558752970047488 |
---|---|
author | Jianwei Xia |
author_facet | Jianwei Xia |
author_sort | Jianwei Xia |
collection | DOAJ |
description | This paper deals with the problem of robust exponential stability and H∞ performance analysis for a class of uncertain Markovian jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for the addressed system are derived. At last, numerical examples is given presented to show the effectiveness of the proposed results. |
format | Article |
id | doaj-art-c3952577e7cc4efc9b0135a842570454 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-c3952577e7cc4efc9b0135a8425704542025-02-03T01:31:45ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/738318738318Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple DelaysJianwei Xia0School of Mathematics Science, Liaocheng University, Shandong 252000, ChinaThis paper deals with the problem of robust exponential stability and H∞ performance analysis for a class of uncertain Markovian jumping system with multiple delays. Based on the reciprocally convex approach, some novel delay-dependent stability criteria for the addressed system are derived. At last, numerical examples is given presented to show the effectiveness of the proposed results.http://dx.doi.org/10.1155/2014/738318 |
spellingShingle | Jianwei Xia Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays Abstract and Applied Analysis |
title | Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays |
title_full | Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays |
title_fullStr | Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays |
title_full_unstemmed | Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays |
title_short | Delay-Dependent Robust Exponential Stability and H∞ Analysis for a Class of Uncertain Markovian Jumping System with Multiple Delays |
title_sort | delay dependent robust exponential stability and h∞ analysis for a class of uncertain markovian jumping system with multiple delays |
url | http://dx.doi.org/10.1155/2014/738318 |
work_keys_str_mv | AT jianweixia delaydependentrobustexponentialstabilityandhanalysisforaclassofuncertainmarkovianjumpingsystemwithmultipledelays |