Interaction Between Radon, Air Ions, and Ultrafine Particles Under Contrasting Atmospheric Conditions in Belgrade, Serbia

Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions...

Full description

Saved in:
Bibliographic Details
Main Authors: Fathya Shabek, Predrag Kolarž, Igor Čeliković, Milica Ćurčić, Aco Janičijević
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/7/808
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radon’s radioactive decay is the main natural source of small air ions near the ground. Its exhalation from soil is affected by meteorological factors, while aerosol pollution reduces air ion concentrations through ion-particle attachment. This study aimed to analyze correlations between radon, ions, and air pollution under varying conditions and to assess potential health impacts. Measurements were taken at two sites: in early autumn at a suburban part of Belgrade with relatively clean air, and in late autumn in central Belgrade under polluted conditions, with low temperatures and high humidity. Parameters measured included radon, small air ions, particle size distribution, PM mass concentration, temperature, humidity, and pressure. Results showed lower radon concentrations in late autumn due to high soil moisture and absence of nocturnal inversions. Radon and air ion concentrations exhibited a strong positive correlation for both polarities under suburban conditions, whereas measurements in the urban setting revealed a weak negative correlation, despite radon concentrations in soil gas being approximately equal at both sites. Small ion levels were also reduced, mainly due to suppressed radon exhalation and increased aerosol concentrations, especially ultrafine particles. A strong negative correlation (r < −0.5) was found between small air ion concentrations and particle number concentrations in the 20–300 nm range, while larger particles (300–1000 nm and >1 µm) showed weak or no correlation due to their lower and more stable concentrations. In contrast, early autumn measurements showed a diurnal cycle of radon, characterized by nighttime maxima and daytime minima, unlike the consistently low values observed in late autumn.
ISSN:2073-4433