JWST Imaging of Edge-on Protoplanetary Disks. IV. Mid-infrared Dust Scattering in the HH 30 Disk

We present near- and mid-infrared (IR) broadband imaging observations of the edge-on protoplanetary disk around HH 30 with the James Webb Space Telescope/Near Infrared Camera and the Mid-Infrared Instrument (MIRI). We combine these observations with archival optical/near-IR scattered light images ob...

Full description

Saved in:
Bibliographic Details
Main Authors: Ryo Tazaki, François Ménard, Gaspard Duchêne, Marion Villenave, Álvaro Ribas, Karl R. Stapelfeldt, Marshall D. Perrin, Christophe Pinte, Schuyler G. Wolff, Deborah L. Padgett, Jie Ma, Laurine Martinien, Maxime Roumesy
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/ad9c6f
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present near- and mid-infrared (IR) broadband imaging observations of the edge-on protoplanetary disk around HH 30 with the James Webb Space Telescope/Near Infrared Camera and the Mid-Infrared Instrument (MIRI). We combine these observations with archival optical/near-IR scattered light images obtained with the Hubble Space Telescope and a millimeter-wavelength dust continuum image obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) with the highest spatial resolution ever obtained for this target. Our multiwavelength images clearly reveal the vertical and radial segregation of micron-sized and submillimeter-sized grains in the disk. In the near- and mid-IR, the images capture not only bireflection nebulae separated by a dark lane but also diverse dynamical processes occurring in the HH 30 disk, such as spiral- and tail-like structures, a conical outflow, and a collimated jet. In contrast, the ALMA image reveals a flat dust disk in the disk midplane. By performing radiative transfer simulations, we show that grains of about 3 μ m in radius or larger are fully vertically mixed to explain the observed mid-IR scattered light flux and its morphology, whereas millimeter-sized grains are settled into a layer with a scale height of ≳1 au at 100 au from the central star. We also find a tension in the disk inclination angle inferred from optical/near-IR and millimeter observations, with the latter being closer to exactly edge-on. Finally, we report the first detection of the proper motion of an emission knot associated with the mid-IR collimated jet detected by combining two epochs of our MIRI 12.8 μ m observations.
ISSN:1538-4357