Flexible switching of feedback control mechanisms allows for learning of different task dynamics.

To produce skilled movements, the brain flexibly adapts to different task requirements and movement contexts. Two core abilities underlie this flexibility. First, depending on the task, the motor system must rapidly switch the way it produces motor commands and how it corrects movements online, i.e....

Full description

Saved in:
Bibliographic Details
Main Authors: Olivier White, Jörn Diedrichsen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0054771&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To produce skilled movements, the brain flexibly adapts to different task requirements and movement contexts. Two core abilities underlie this flexibility. First, depending on the task, the motor system must rapidly switch the way it produces motor commands and how it corrects movements online, i.e. it switches between different (feedback) control policies. Second, it must also adapt to environmental changes for different tasks separately. Here we show these two abilities are related. In a bimanual movement task, we show that participants can switch on a movement-by-movement basis between two feedback control policies, depending only on a static visual cue. When this cue indicates that the hands control separate objects, reactions to force field perturbations of each arm are purely unilateral. In contrast, when the visual cue indicates a commonly controlled object, reactions are shared across hands. Participants are also able to learn different force fields associated with a visual cue. This is however only the case when the visual cue is associated with different feedback control policies. These results indicate that when the motor system can flexibly switch between different control policies, it is also able to adapt separately to the dynamics of different environmental contexts. In contrast, visual cues that are not associated with different control policies are not effective for learning different task dynamics.
ISSN:1932-6203