Asymptotic Behavior of a Competition-Diffusion System with Variable Coefficients and Time Delays
A class of time-delay reaction-diffusion systems with variable coefficients which arise from the model of two competing ecological species is discussed. An asymptotic global attractor is established in terms of the variable coefficients, independent of the time delays and the effect of diffusion by...
Saved in:
| Main Authors: | Miguel Uh Zapata, Eric Avila Vales, Angel G. Estrella |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2008-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2008/537284 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Existence and Asymptotic Behavior of Traveling Wave Fronts for a Time-Delayed Degenerate Diffusion Equation
by: Weifang Yan, et al.
Published: (2013-01-01) -
The Asymptotic Behavior in a Nonlinear Cobweb Model with Time Delays
by: Akio Matsumoto, et al.
Published: (2015-01-01) -
The Asymptotics of Periodic Solutions of Autonomous Parabolic Equations with Rapidly Oscillating Coefficients and Equations with Large Diffusion Coefficients
by: S. A. Kashchenko, et al.
Published: (2015-02-01) -
Effects of Diffusion and Delays on the Dynamic Behavior of a Competition and Cooperation Model
by: Hassan Y. Alfifi
Published: (2025-03-01) -
Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion
by: Dan Li, et al.
Published: (2014-01-01)