Irreducible Modular Representations of the Reflection Group G(m,1,n)

In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almo...

Full description

Saved in:
Bibliographic Details
Main Authors: José O. Araujo, Tim Bratten, Cesar L. Maiarú
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2015/808520
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564144395517952
author José O. Araujo
Tim Bratten
Cesar L. Maiarú
author_facet José O. Araujo
Tim Bratten
Cesar L. Maiarú
author_sort José O. Araujo
collection DOAJ
description In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of types An and Bn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of type G(m,1,n).
format Article
id doaj-art-c2c5fc0dcc634f9388c8de078c818a4b
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-c2c5fc0dcc634f9388c8de078c818a4b2025-02-03T01:11:44ZengWileyJournal of Mathematics2314-46292314-47852015-01-01201510.1155/2015/808520808520Irreducible Modular Representations of the Reflection Group G(m,1,n)José O. Araujo0Tim Bratten1Cesar L. Maiarú2Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaFacultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaFacultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, B7000GHG Tandil, ArgentinaIn an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of type Bn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of types An and Bn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of type G(m,1,n).http://dx.doi.org/10.1155/2015/808520
spellingShingle José O. Araujo
Tim Bratten
Cesar L. Maiarú
Irreducible Modular Representations of the Reflection Group G(m,1,n)
Journal of Mathematics
title Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_full Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_fullStr Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_full_unstemmed Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_short Irreducible Modular Representations of the Reflection Group G(m,1,n)
title_sort irreducible modular representations of the reflection group g m 1 n
url http://dx.doi.org/10.1155/2015/808520
work_keys_str_mv AT joseoaraujo irreduciblemodularrepresentationsofthereflectiongroupgm1n
AT timbratten irreduciblemodularrepresentationsofthereflectiongroupgm1n
AT cesarlmaiaru irreduciblemodularrepresentationsofthereflectiongroupgm1n