Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means

We present the best possible parameters α1,α2,β1,β2∈R and α3,β3∈(1/2,1) such that the double inequalities α1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b), and C[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a] hold for...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying-Qing Song, Wei-Mao Qian, Yu-Ming Chu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2016/5131907
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550724141056000
author Ying-Qing Song
Wei-Mao Qian
Yu-Ming Chu
author_facet Ying-Qing Song
Wei-Mao Qian
Yu-Ming Chu
author_sort Ying-Qing Song
collection DOAJ
description We present the best possible parameters α1,α2,β1,β2∈R and α3,β3∈(1/2,1) such that the double inequalities α1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b), and C[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a] hold for all a,b>0 with a≠b and give several sharp inequalities involving the hyperbolic and inverse hyperbolic functions. Here, N(a,b), A(a,b), Q(a,b), and C(a,b) are, respectively, the Neuman, arithmetic, quadratic, and centroidal means of a and b, and NQA(a,b)=N[Q(a,b),A(a,b)].
format Article
id doaj-art-c28a8270e2964b09820d8b04ff3d02b5
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-c28a8270e2964b09820d8b04ff3d02b52025-02-03T06:06:04ZengWileyJournal of Function Spaces2314-88962314-88882016-01-01201610.1155/2016/51319075131907Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal MeansYing-Qing Song0Wei-Mao Qian1Yu-Ming Chu2School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, ChinaSchool of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, ChinaSchool of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, ChinaWe present the best possible parameters α1,α2,β1,β2∈R and α3,β3∈(1/2,1) such that the double inequalities α1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b), and C[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a] hold for all a,b>0 with a≠b and give several sharp inequalities involving the hyperbolic and inverse hyperbolic functions. Here, N(a,b), A(a,b), Q(a,b), and C(a,b) are, respectively, the Neuman, arithmetic, quadratic, and centroidal means of a and b, and NQA(a,b)=N[Q(a,b),A(a,b)].http://dx.doi.org/10.1155/2016/5131907
spellingShingle Ying-Qing Song
Wei-Mao Qian
Yu-Ming Chu
Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
Journal of Function Spaces
title Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
title_full Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
title_fullStr Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
title_full_unstemmed Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
title_short Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
title_sort optimal bounds for neuman mean using arithmetic and centroidal means
url http://dx.doi.org/10.1155/2016/5131907
work_keys_str_mv AT yingqingsong optimalboundsforneumanmeanusingarithmeticandcentroidalmeans
AT weimaoqian optimalboundsforneumanmeanusingarithmeticandcentroidalmeans
AT yumingchu optimalboundsforneumanmeanusingarithmeticandcentroidalmeans