Repdigits as difference of two Fibonacci or Lucas numbers
In the present study we investigate all repdigits which are expressed as a difference of two Fibonacci or Lucas numbers. We show that if $F_{n}-F_{m}$ is a repdigit, where $F_{n}$ denotes the $n$-th Fibonacci number, then $(n,m)\in \{(7,3),(9,1),(9,2),(11,1),(11,2),$ $(11,9),(12,11),(15,10)\}.$ Furt...
Saved in:
| Main Authors: | P. Ray, K. Bhoi |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2021-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/255 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers
by: Fatih Erduvan, et al.
Published: (2023-10-01) -
ON THE ZEROS OF THE DERIVATIVES OF FIBONACCI AND LUCAS POLYNOMIALS
by: Nihal Yılmaz Özgür, et al.
Published: (2015-08-01) -
3x3 Dimensional Special Matrices Associated with Fibonacci and Lucas Numbers
by: Sinan Karakaya, et al.
Published: (2018-12-01) -
Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
by: Yasemin Taşyurdu, et al.
Published: (2023-02-01) -
DETERMINANTAL IDENTITIES FOR k LUCAS SEQUENCE
by: Ashok Dnyandeo Godase, et al.
Published: (2016-07-01)