Long-Term Evaluation of GCOM-C/SGLI Reflectance and Water Quality Products: Variability Among JAXA G-Portal and JASMES

The Global Change Observation Mission-Climate (GCOM-C) satellite, launched in December 2017, is equipped with the Second-generation Global Imager (SGLI) sensor, featuring a moderate spatial resolution of 250 m and 19 spectral bands, including the unique 380 nm band. After six years in orbit, a compr...

Full description

Saved in:
Bibliographic Details
Main Authors: Salem Ibrahim Salem, Mitsuhiro Toratani, Hiroto Higa, SeungHyun Son, Eko Siswanto, Joji Ishizaka
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/2/221
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Global Change Observation Mission-Climate (GCOM-C) satellite, launched in December 2017, is equipped with the Second-generation Global Imager (SGLI) sensor, featuring a moderate spatial resolution of 250 m and 19 spectral bands, including the unique 380 nm band. After six years in orbit, a comprehensive evaluation of SGLI products and their temporal consistency is needed. Remote sensing reflectance (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula>) is the primary product for monitoring water quality, forming the basis for deriving key oceanic constituents such as chlorophyll-a (Chla) and total suspended matter (TSM). The Japan Aerospace Exploration Agency (JAXA) provides <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> products through two platforms, G-Portal and JASMES, each employing different atmospheric correction methodologies and assumptions. This study aims to evaluate the SGLI full-resolution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> products from G-Portal and JASMES at regional scales (Japan and East Asia) and assess G-Portal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> products globally between January 2018 and December 2023. The evaluation employs in situ matchups from NASA’s Aerosol Robotic Network-Ocean Color (AERONET-OC) and cruise measurements. We also assess the retrieval accuracy of two water quality indices, Chla and TSM. The AERONET-OC data analysis reveals that JASMES systematically underestimates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> values at shorter wavelengths, particularly at 412 nm. While the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> accuracy at 412 nm is relatively low, G-Portal’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> products perform better than JASMES at shorter wavelengths, showing lower errors and stronger correlations with AERONET-OC data. Both G-Portal and JASMES show lower agreement with AERONET-OC and cruise datasets at shorter wavelengths but demonstrate improved agreement at longer wavelengths (530 nm, 565 nm, and 670 nm). JASMES generates approximately 12% more matchup data points than G-Portal, likely due to G-Portal’s stricter atmospheric correction thresholds that exclude pixels with high reflectance. In situ measurements indicate that G-Portal provides better overall agreement, particularly at lower <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> magnitudes and Chla concentrations below 5 mg/m<sup>3</sup>. This evaluation underscores the complexities and challenges of atmospheric correction, particularly in optically complex coastal waters (Case 2 waters), which may require tailored atmospheric correction methods different from the standard approach. The assessment of temporal consistency and seasonal variations in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></mrow></semantics></math></inline-formula> data shows that both platforms effectively capture interannual trends and maintain temporal stability, particularly from the 490 nm band onward, underscoring the potential of SGLI data for long-term monitoring of coastal and oceanic environments.
ISSN:2072-4292