Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis (PCA) for Anomaly Detection

This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectivene...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanna Arini Parhusip, Suryasatriya Trihandaru, Bambang Susanto, Adrianus Herry Heriadi, Petrus Priyo Santosa, Yohanes Sardjono, Johanes Dian Kurniawan
Format: Article
Language:English
Published: Udayana University, Institute for Research and Community Services 2024-07-01
Series:Lontar Komputer
Online Access:https://ojs.unud.ac.id/index.php/lontar/article/view/109995
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research addresses a critical issue in industrial environments: air quality, specifically regarding PM 1.0 and PM 2.5. High concentrations of these particles pose significant health risks. The study measures temperature, humidity, pressure, altitude, PM 1.0, and PM 2.5 and shows the effectiveness of using AIOT-Particle devices to analyze these features with Principal Component Analysis (PCA). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to detect anomalies during the observation period. Anomalies occur when the altitude ranges from 65 to 70 units, according to PM 1.0 and PM 2.5 values. The positions where anomalies occur are illustrated based on altitude, temperature, pressure, and concentration. The results demonstrate that altitude dominates as the first feature. Finally, the research concludes that altitude, PM 1.0, and PM 2.5 are the dominant features. The study confirms the effectiveness of PCA and recommends using these three features for anomaly detection in DBSCAN. Overall, the research highlights the novelty and success of AIOT-Particle in industrial environments.
ISSN:2088-1541
2541-5832