Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The...

Full description

Saved in:
Bibliographic Details
Main Authors: Luciano Fanton, Christian Paravan, Luigi T. De Luca
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2012/673838
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.
ISSN:1687-5966
1687-5974