Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model

Aiming at the uncertainty problem caused by the time-varying modeling parameters associated with ship speed in the course tracking control of underactuated surface vessels (USVs), this paper proposes a control algorithm based on the dynamic neural fuzzy model (DNFM). The DNFM simultaneously adjusts...

Full description

Saved in:
Bibliographic Details
Main Authors: Guangyu Li, Yanxin Li, Xiang Li, Mutong Liu, Xuesong Zhang, Hua Jin
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/12/720
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the uncertainty problem caused by the time-varying modeling parameters associated with ship speed in the course tracking control of underactuated surface vessels (USVs), this paper proposes a control algorithm based on the dynamic neural fuzzy model (DNFM). The DNFM simultaneously adjusts the structure and parameters during learning and fully approximates the inverse dynamics of ships. Online identification and modeling lays the model foundation for ship motion control. The trained DNFM, serving as an inverse controller, is connected in parallel with the fractional-order PI<sup>λ</sup>D<sup>μ</sup> controller to be used for the tracking control of the ship’s course. Moreover, the weights of the model can be further adjusted during the course tracking. Taking the actual ship data of a 5446 TEU large container ship, simulation experiments are conducted, respectively, for course tracking, course tracking under wind and wave interferences, and comparison with five different controllers. This proposed controller can overcome the influence of the uncertainty of modeling parameters, tracking the desired course quickly and effectively.
ISSN:2504-3110