Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Artificial Neural Networks Applied to Differentiate Escherichia coli papG+/papG- Strains
Fimbriae are an important pathogenic factor of Escherichia coli during development of urinary tract infections. Here, we describe a new method for identification of Escherichia coli papG+ from papG- strains using the attenuated total reflectance Fourier transform infrared Spectroscopy (ATR FT-IR). W...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Spectroscopy |
Online Access: | http://dx.doi.org/10.1155/2013/538686 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fimbriae are an important pathogenic factor of Escherichia coli during development of urinary tract infections. Here, we describe a new method for identification of Escherichia coli papG+ from papG- strains using the attenuated total reflectance Fourier transform infrared Spectroscopy (ATR FT-IR). We applied artificial neural networks to the analysis of the ATR FT-IR results. These methods allowed to discriminate E. coli papG+ from papG- strains with accuracy of 99%. |
---|---|
ISSN: | 2314-4920 2314-4939 |