Speedup of Interval Type 2 Fuzzy Logic Systems Based on GPU for Robot Navigation

As the number of rules and sample rate for type 2 fuzzy logic systems (T2FLSs) increases, the speed of calculations becomes a problem. The T2FLS has a large membership value of inherent algorithmic parallelism that modern CPU architectures do not exploit. In the T2FLS, many rules and algorithms can...

Full description

Saved in:
Bibliographic Details
Main Authors: Long Thanh Ngo, Dzung Dinh Nguyen, Long The Pham, Cuong Manh Luong
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Advances in Fuzzy Systems
Online Access:http://dx.doi.org/10.1155/2012/698062
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the number of rules and sample rate for type 2 fuzzy logic systems (T2FLSs) increases, the speed of calculations becomes a problem. The T2FLS has a large membership value of inherent algorithmic parallelism that modern CPU architectures do not exploit. In the T2FLS, many rules and algorithms can be speedup on a graphics processing unit (GPU) as long as the majority of computation a various stages and components are not dependent on each other. This paper demonstrates how to install interval type 2 fuzzy logic systems (IT2-FLSs) on the GPU and experiments for obstacle avoidance behavior of robot navigation. GPU-based calculations are high-performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU.
ISSN:1687-7101
1687-711X