Systems Design, Fabrication, and Testing of a High-Speed Miniature Motor for Cryogenic Cooler

The long-term storage of liquid hydrogen for space missions is of considerable interest to NASA. To this end, the Reverse Turbo-Brayton Cryocooler (RTBC) is considerably lighter than conventional designs and a potentially viable and attractive solution for NASA's long-term Zero-Boil-off (ZBO) h...

Full description

Saved in:
Bibliographic Details
Main Authors: Dipjyoti Acharya, Lei Zhou, Liping Zheng, Thomas X. Wu, Jay Kapat, Louis Chow, Nagaraj K. Arakere
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2009/936251
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The long-term storage of liquid hydrogen for space missions is of considerable interest to NASA. To this end, the Reverse Turbo-Brayton Cryocooler (RTBC) is considerably lighter than conventional designs and a potentially viable and attractive solution for NASA's long-term Zero-Boil-off (ZBO) hydrogen storage system for future space missions. We present the systems design, fabrication, and performance evaluation of the Permanent Magnet Synchronous Motor (PMSM) powering a cryocooler capable of removing 20 W of heat at 18 K with a COP of 0.005 and driven by two 2-kW permanent magnet synchronous motors operating at 200 000 rpm and at room temperature and 77 K. Structural, thermal, and rotordynamic aspects of system design are considered.
ISSN:1023-621X
1542-3034