Decomposition-Aware Framework for Probabilistic and Flexible Time Series Forecasting in Aerospace Electronic Systems
Degradation prediction for aerospace electronic systems plays a crucial role in maintenance work. This paper proposes a concise and efficient framework for multivariate time series forecasting that is capable of handling diverse sequence representations through a Channel-Independent (CI) strategy. T...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/2/262 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Degradation prediction for aerospace electronic systems plays a crucial role in maintenance work. This paper proposes a concise and efficient framework for multivariate time series forecasting that is capable of handling diverse sequence representations through a Channel-Independent (CI) strategy. This framework integrates a decomposition-aware layer to effectively separate and fuse global trends and local variations and a temporal attention module to capture temporal dependencies dynamically. This design enables the model to process multiple distinct sequences independently while maintaining the flexibility to learn shared patterns across channels. Additionally, the framework incorporates probabilistic distribution forecasting using likelihood functions, addressing the dynamic variations and uncertainty in time series data. The experimental results on multiple real-world datasets validate the framework’s effectiveness, demonstrating its robustness and adaptability in handling diverse sequences across various application scenarios. |
---|---|
ISSN: | 2227-7390 |