Some invariant theorems on geometry of Einstein non-symmetric field theory

This paper generalizes Einstein's theorem. It is shown that under the transformation TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi, curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M....

Full description

Saved in:
Bibliographic Details
Main Authors: Liu Shu-Lin, Xu Sen-Lin
Format: Article
Language:English
Published: Wiley 1983-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171283000629
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562904435523584
author Liu Shu-Lin
Xu Sen-Lin
author_facet Liu Shu-Lin
Xu Sen-Lin
author_sort Liu Shu-Lin
collection DOAJ
description This paper generalizes Einstein's theorem. It is shown that under the transformation TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi, curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M.
format Article
id doaj-art-c1025d771ca8402cb6d818aa37991fca
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1983-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-c1025d771ca8402cb6d818aa37991fca2025-02-03T01:21:32ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251983-01-016472773610.1155/S0161171283000629Some invariant theorems on geometry of Einstein non-symmetric field theoryLiu Shu-Lin0Xu Sen-Lin1Institute of Mathematics, The Academy of Sciences of China, ChinaDepartment of Mathematics, University of Science and Technology of China, ChinaThis paper generalizes Einstein's theorem. It is shown that under the transformation TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi, curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M.http://dx.doi.org/10.1155/S0161171283000629Einstein non-symmetric fieldEinstein theoremcurvature tensorRicci tensorscalar curvatureTΛ transformationTV transformation.
spellingShingle Liu Shu-Lin
Xu Sen-Lin
Some invariant theorems on geometry of Einstein non-symmetric field theory
International Journal of Mathematics and Mathematical Sciences
Einstein non-symmetric field
Einstein theorem
curvature tensor
Ricci tensor
scalar curvature
TΛ transformation
TV transformation.
title Some invariant theorems on geometry of Einstein non-symmetric field theory
title_full Some invariant theorems on geometry of Einstein non-symmetric field theory
title_fullStr Some invariant theorems on geometry of Einstein non-symmetric field theory
title_full_unstemmed Some invariant theorems on geometry of Einstein non-symmetric field theory
title_short Some invariant theorems on geometry of Einstein non-symmetric field theory
title_sort some invariant theorems on geometry of einstein non symmetric field theory
topic Einstein non-symmetric field
Einstein theorem
curvature tensor
Ricci tensor
scalar curvature
TΛ transformation
TV transformation.
url http://dx.doi.org/10.1155/S0161171283000629
work_keys_str_mv AT liushulin someinvarianttheoremsongeometryofeinsteinnonsymmetricfieldtheory
AT xusenlin someinvarianttheoremsongeometryofeinsteinnonsymmetricfieldtheory