Some invariant theorems on geometry of Einstein non-symmetric field theory
This paper generalizes Einstein's theorem. It is shown that under the transformation TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi, curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M....
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1983-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171283000629 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562904435523584 |
---|---|
author | Liu Shu-Lin Xu Sen-Lin |
author_facet | Liu Shu-Lin Xu Sen-Lin |
author_sort | Liu Shu-Lin |
collection | DOAJ |
description | This paper generalizes Einstein's theorem. It is shown that under the
transformation
TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi,
curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M. |
format | Article |
id | doaj-art-c1025d771ca8402cb6d818aa37991fca |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1983-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-c1025d771ca8402cb6d818aa37991fca2025-02-03T01:21:32ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251983-01-016472773610.1155/S0161171283000629Some invariant theorems on geometry of Einstein non-symmetric field theoryLiu Shu-Lin0Xu Sen-Lin1Institute of Mathematics, The Academy of Sciences of China, ChinaDepartment of Mathematics, University of Science and Technology of China, ChinaThis paper generalizes Einstein's theorem. It is shown that under the transformation TΛ:Uikℓ→U¯ikℓ≡Uikℓ+δiℓΛk−δkℓΛi, curvature tensor Skℓmi(U), Ricci tensor Sik(U), and scalar curvature S(U) are all invariant, where Λ=Λjdxj is a closed 1-differential form on an n-dimensional manifold M.http://dx.doi.org/10.1155/S0161171283000629Einstein non-symmetric fieldEinstein theoremcurvature tensorRicci tensorscalar curvatureTΛ transformationTV transformation. |
spellingShingle | Liu Shu-Lin Xu Sen-Lin Some invariant theorems on geometry of Einstein non-symmetric field theory International Journal of Mathematics and Mathematical Sciences Einstein non-symmetric field Einstein theorem curvature tensor Ricci tensor scalar curvature TΛ transformation TV transformation. |
title | Some invariant theorems on geometry of Einstein non-symmetric field theory |
title_full | Some invariant theorems on geometry of Einstein non-symmetric field theory |
title_fullStr | Some invariant theorems on geometry of Einstein non-symmetric field theory |
title_full_unstemmed | Some invariant theorems on geometry of Einstein non-symmetric field theory |
title_short | Some invariant theorems on geometry of Einstein non-symmetric field theory |
title_sort | some invariant theorems on geometry of einstein non symmetric field theory |
topic | Einstein non-symmetric field Einstein theorem curvature tensor Ricci tensor scalar curvature TΛ transformation TV transformation. |
url | http://dx.doi.org/10.1155/S0161171283000629 |
work_keys_str_mv | AT liushulin someinvarianttheoremsongeometryofeinsteinnonsymmetricfieldtheory AT xusenlin someinvarianttheoremsongeometryofeinsteinnonsymmetricfieldtheory |