Deep Learning-Assisted Compound Bioactivity Estimation Framework

Drug Discovery is a highly complicated process. On average, it takes six to twelve years to manufacture a new drug and have the product released in the market. It is of utmost importance to find methods that would accelerate the manufacturing process. This significant challenge in drug development c...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasmine Eid Mahmoud Yousef, Ayman El-Kilany, Farid Ali, Yassin M. Nissan, Ehab E. Hassanein
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Egyptian Informatics Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S111086652400121X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug Discovery is a highly complicated process. On average, it takes six to twelve years to manufacture a new drug and have the product released in the market. It is of utmost importance to find methods that would accelerate the manufacturing process. This significant challenge in drug development can be addressed using deep learning techniques. The aim of this paper is to propose a deep learning-based framework that can help chemists examine compound biological activity in a more accurate manner. The proposed framework employs autoencoder for data representation of the compounds data, which is then classified using deep neural network followed by building a customized deep regression model to estimate an accurate value of the compound bioactivity. The proposed framework achieved an accuracy of 89% in autoencoder reconstruction error, 79.01% in classification, and MAE of 2.4 while predicting compound bioactivity using deep regression model.
ISSN:1110-8665