Array-Patterned Micro-Structures in Spectacle Lenses Designed for Myopia Control via Image Blur
Using micro-structure components in spectacle lenses has enabled myopia progression control in children and teenagers. However, the optical design of these spectacle lenses has never been discussed, leading to a lack of correct understanding of the underlying optical treatment principles. In this wo...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/2/110 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Using micro-structure components in spectacle lenses has enabled myopia progression control in children and teenagers. However, the optical design of these spectacle lenses has never been discussed, leading to a lack of correct understanding of the underlying optical treatment principles. In this work, array-patterned hexagonal lenslets with two powers of opposite signs were proposed to construct a lenslet array-integrated (LARI) spectacle lens developed for an ongoing, randomized, controlled clinical trial and to support the optical approach to myopia control leveraging retinal image blur. We found that the phase modulation induced by the micro-structures of the lenslet array contributes to the increase in RMS wavefront aberrations, leading to image blur, further inspiring the novel array-patterned micro-structure design with high-order phase elements (HOPEs). The optical performance of both LARI and HOPE spectacle lenses was investigated by simulation and experiment. |
|---|---|
| ISSN: | 2304-6732 |