Self-Adaptive Artificial Bee Colony for Function Optimization
Artificial bee colony (ABC) is a novel population-based optimization method, having the advantage of less control parameters, being easy to implement, and having strong global optimization ability. However, ABC algorithm has some shortcomings concerning its position-updated equation, which is skille...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Control Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/4851493 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Artificial bee colony (ABC) is a novel population-based optimization method, having the advantage of less control parameters, being easy to implement, and having strong global optimization ability. However, ABC algorithm has some shortcomings concerning its position-updated equation, which is skilled in global search and bad at local search. In order to coordinate the ability of global and local search, we first propose a self-adaptive ABC algorithm (denoted as SABC) in which an improved position-updated equation is used to guide the search of new candidate individuals. In addition, good-point-set approach is introduced to produce the initial population and scout bees. The proposed SABC is tested on 12 well-known problems. The simulation results demonstrate that the proposed SABC algorithm has better search ability with other several ABC variants. |
---|---|
ISSN: | 1687-5249 1687-5257 |