A Local Discrete Feature Histogram for Point Cloud Feature Representation

Local feature descriptors are a critical problem in computer vision; the majority of current approaches find it difficult to achieve a balance between descriptiveness, robustness, compactness, and efficiency. This paper proposes the local discrete feature histogram (LDFH), a novel local feature desc...

Full description

Saved in:
Bibliographic Details
Main Authors: Linjing Jia, Cong Li, Guan Xi, Xuelian Liu, Da Xie, Chunyang Wang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/5/2367
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Local feature descriptors are a critical problem in computer vision; the majority of current approaches find it difficult to achieve a balance between descriptiveness, robustness, compactness, and efficiency. This paper proposes the local discrete feature histogram (LDFH), a novel local feature descriptor, as a solution to this problem. The LDFH descriptor is constructed based on a robust local reference frame (LRF). It partitions the local space based on radial distance and calculates three geometric features, including the normal deviation angle, polar angle, and normal lateral angle, in each subspace. These features are then discretized to generate three feature statistical histograms, which are combined using a weighted fusion strategy to generate the final LDFH descriptor. Experiments on public datasets demonstrate that, compared with the existing methods, LDFH strikes an excellent balance between descriptiveness, robustness, compactness, and efficiency, making it suitable for various scenes and sensor datasets.
ISSN:2076-3417