Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimede...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2012/961642 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558130209226752 |
---|---|
author | Madjid Eshaghi Gordji Badrkhan Alizadeh Young Whan Lee Gwang Hui Kim |
author_facet | Madjid Eshaghi Gordji Badrkhan Alizadeh Young Whan Lee Gwang Hui Kim |
author_sort | Madjid Eshaghi Gordji |
collection | DOAJ |
description | Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem. |
format | Article |
id | doaj-art-c0511d32504748b5a5d7e31df9be6f83 |
institution | Kabale University |
issn | 1026-0226 1607-887X |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Discrete Dynamics in Nature and Society |
spelling | doaj-art-c0511d32504748b5a5d7e31df9be6f832025-02-03T01:33:13ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2012-01-01201210.1155/2012/961642961642Nearly Quadratic n-Derivations on Non-Archimedean Banach AlgebrasMadjid Eshaghi Gordji0Badrkhan Alizadeh1Young Whan Lee2Gwang Hui Kim3Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, IranTechnical and Vocational University of Iran, Technical and Vocational Faculty of Tabriz, P.O. Box 51745-135, Tabriz, IranDepartment of Computer Hacking and Information Security, Daejeon University, Dong-gu, Daejeon 300-716, Republic of KoreaDepartment of Mathematics, Kangnam University, Yongin, Gyeonggi 446-702, Republic of KoreaLet n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.http://dx.doi.org/10.1155/2012/961642 |
spellingShingle | Madjid Eshaghi Gordji Badrkhan Alizadeh Young Whan Lee Gwang Hui Kim Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras Discrete Dynamics in Nature and Society |
title | Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras |
title_full | Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras |
title_fullStr | Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras |
title_full_unstemmed | Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras |
title_short | Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras |
title_sort | nearly quadratic n derivations on non archimedean banach algebras |
url | http://dx.doi.org/10.1155/2012/961642 |
work_keys_str_mv | AT madjideshaghigordji nearlyquadraticnderivationsonnonarchimedeanbanachalgebras AT badrkhanalizadeh nearlyquadraticnderivationsonnonarchimedeanbanachalgebras AT youngwhanlee nearlyquadraticnderivationsonnonarchimedeanbanachalgebras AT gwanghuikim nearlyquadraticnderivationsonnonarchimedeanbanachalgebras |