Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras

Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimede...

Full description

Saved in:
Bibliographic Details
Main Authors: Madjid Eshaghi Gordji, Badrkhan Alizadeh, Young Whan Lee, Gwang Hui Kim
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2012/961642
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558130209226752
author Madjid Eshaghi Gordji
Badrkhan Alizadeh
Young Whan Lee
Gwang Hui Kim
author_facet Madjid Eshaghi Gordji
Badrkhan Alizadeh
Young Whan Lee
Gwang Hui Kim
author_sort Madjid Eshaghi Gordji
collection DOAJ
description Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.
format Article
id doaj-art-c0511d32504748b5a5d7e31df9be6f83
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-c0511d32504748b5a5d7e31df9be6f832025-02-03T01:33:13ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2012-01-01201210.1155/2012/961642961642Nearly Quadratic n-Derivations on Non-Archimedean Banach AlgebrasMadjid Eshaghi Gordji0Badrkhan Alizadeh1Young Whan Lee2Gwang Hui Kim3Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, IranTechnical and Vocational University of Iran, Technical and Vocational Faculty of Tabriz, P.O. Box 51745-135, Tabriz, IranDepartment of Computer Hacking and Information Security, Daejeon University, Dong-gu, Daejeon 300-716, Republic of KoreaDepartment of Mathematics, Kangnam University, Yongin, Gyeonggi 446-702, Republic of KoreaLet n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.http://dx.doi.org/10.1155/2012/961642
spellingShingle Madjid Eshaghi Gordji
Badrkhan Alizadeh
Young Whan Lee
Gwang Hui Kim
Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
Discrete Dynamics in Nature and Society
title Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
title_full Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
title_fullStr Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
title_full_unstemmed Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
title_short Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras
title_sort nearly quadratic n derivations on non archimedean banach algebras
url http://dx.doi.org/10.1155/2012/961642
work_keys_str_mv AT madjideshaghigordji nearlyquadraticnderivationsonnonarchimedeanbanachalgebras
AT badrkhanalizadeh nearlyquadraticnderivationsonnonarchimedeanbanachalgebras
AT youngwhanlee nearlyquadraticnderivationsonnonarchimedeanbanachalgebras
AT gwanghuikim nearlyquadraticnderivationsonnonarchimedeanbanachalgebras