Separation of Transformers for Class 1E Systems in Nuclear Power Plants

In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Sang-Hyun Lee, Choong-Koo Chang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2017/3976049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, there is a room for improvement in the design margin against the voltage drop and short circuit current. This paper discusses the amount that the voltage drop and short circuit current occur in the existing electric power system of APR1400. Additionally, this paper studies with regard to the improved model that has the extra margin against the high voltage drop and short circuit current by separation of unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) for the Class 1E loads. The improved model of the electric power system by separation of UAT and SAT has been suggested through this paper. Additionally, effects of reliability and cost caused by the electric power system modification are considered.
ISSN:1687-6075
1687-6083