Experimental and Numerical Investigation of the Ground Shock Coupling Factor for Near-Surface Detonations

This paper presents the results of recent ground shock experiments conducted by the U.S. Army Engineer Research and Development Center to further investigate the adequacy of the coupling factor approach to shallow-buried or near-surface detonations. Comparisons between these recent experimental resu...

Full description

Saved in:
Bibliographic Details
Main Authors: Timothy W. Shelton, John Q. Ehrgott, Ramon J. Moral, Michele Barbato
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2014/789202
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the results of recent ground shock experiments conducted by the U.S. Army Engineer Research and Development Center to further investigate the adequacy of the coupling factor approach to shallow-buried or near-surface detonations. Comparisons between these recent experimental results and results of numerical simulations of the ground shock propagation in soil are presented. It was found that the coupling factor curve currently adopted in design of buried structures does not accurately represent the actual ground shock propagation in soil and that different coupling factor curves are needed for different physical quantities of interest in design. The results presented in this paper also suggest that the coupling factor curves are functions of several parameters in addition to the depth of burial and that numerical simulations can capture reasonably well the ground shock propagation of soil stresses and particle velocities.
ISSN:1070-9622
1875-9203