Martingale Morrey-Campanato Spaces and Fractional Integrals

We introduce Morrey-Campanato spaces of martingales and give their basic properties. Our definition of martingale Morrey-Campanato spaces is different from martingale Lipschitz spaces introduced by Weisz, while Campanato spaces contain Lipschitz spaces as special cases. We also give the relation bet...

Full description

Saved in:
Bibliographic Details
Main Authors: Eiichi Nakai, Gaku Sadasue
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/673929
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566637457309696
author Eiichi Nakai
Gaku Sadasue
author_facet Eiichi Nakai
Gaku Sadasue
author_sort Eiichi Nakai
collection DOAJ
description We introduce Morrey-Campanato spaces of martingales and give their basic properties. Our definition of martingale Morrey-Campanato spaces is different from martingale Lipschitz spaces introduced by Weisz, while Campanato spaces contain Lipschitz spaces as special cases. We also give the relation between these definitions. Moreover, we establish the boundedness of fractional integrals as martingale transforms on these spaces. To do this we show the boundedness of the maximal function on martingale Morrey-Campanato spaces.
format Article
id doaj-art-bfedc52958754cee855e21ac4073d1fc
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-bfedc52958754cee855e21ac4073d1fc2025-02-03T01:03:38ZengWileyJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/673929673929Martingale Morrey-Campanato Spaces and Fractional IntegralsEiichi Nakai0Gaku Sadasue1Department of Mathematics, Ibaraki University, Mito, Ibaraki 310-8512, JapanDepartment of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, JapanWe introduce Morrey-Campanato spaces of martingales and give their basic properties. Our definition of martingale Morrey-Campanato spaces is different from martingale Lipschitz spaces introduced by Weisz, while Campanato spaces contain Lipschitz spaces as special cases. We also give the relation between these definitions. Moreover, we establish the boundedness of fractional integrals as martingale transforms on these spaces. To do this we show the boundedness of the maximal function on martingale Morrey-Campanato spaces.http://dx.doi.org/10.1155/2012/673929
spellingShingle Eiichi Nakai
Gaku Sadasue
Martingale Morrey-Campanato Spaces and Fractional Integrals
Journal of Function Spaces and Applications
title Martingale Morrey-Campanato Spaces and Fractional Integrals
title_full Martingale Morrey-Campanato Spaces and Fractional Integrals
title_fullStr Martingale Morrey-Campanato Spaces and Fractional Integrals
title_full_unstemmed Martingale Morrey-Campanato Spaces and Fractional Integrals
title_short Martingale Morrey-Campanato Spaces and Fractional Integrals
title_sort martingale morrey campanato spaces and fractional integrals
url http://dx.doi.org/10.1155/2012/673929
work_keys_str_mv AT eiichinakai martingalemorreycampanatospacesandfractionalintegrals
AT gakusadasue martingalemorreycampanatospacesandfractionalintegrals