An ECC-Based Anonymous and Fast Handover Authentication Protocol for Internet of Vehicles
As an important part of the Internet of Things, the Internet of Vehicles (IoV) has achieved efficient interconnection and collaboration between vehicles and road infrastructure, and between vehicles through advanced information and communication technologies. However, the high-speed movement of vehi...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/5894 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As an important part of the Internet of Things, the Internet of Vehicles (IoV) has achieved efficient interconnection and collaboration between vehicles and road infrastructure, and between vehicles through advanced information and communication technologies. However, the high-speed movement of vehicles has generated a large number of cross-domain behaviors, which has greatly increased the number of authentications. Existing authentication protocols face challenges such as high cost, high computational overhead, and easy eavesdropping, interception, or tampering. To this end, this paper proposes an ECC-based IoV secure and efficient handover authentication protocol. The protocol adopts a “non-full key escrow” mechanism. The private key of the vehicle is jointly generated by the Trusted Authority (TA) and the vehicle. The TA only holds part of the private key. Even if the TA is malicious, the security of the vehicle’s private key can be ensured. At the same time, the proposed protocol uses the time tree technology in trusted computing to share part of the vehicle’s private data, which not only ensures the security of authentication, but also improves the efficiency of authentication, and solves the high-latency problem caused by the use of blockchain in previous protocols. When the vehicle moves across domains, there is no need to re-register and authenticate, which reduces the authentication overhead. Compared with existing protocols, this protocol is lightweight in both computational and communication overheads, effectively solving the problem of excessive cost. |
|---|---|
| ISSN: | 2076-3417 |