Influence of Parallel-Joint Position on Mechanical Behavior and Acoustic Emission Characteristics of Rock Pillar

In this paper, the parallel-joint rock column model is established based on PFC software, and the effects of different joint positions on the mechanical properties, acoustic emission characteristics, and damage evolution characteristics of rock columns are analyzed. In the PFC models, the intact roc...

Full description

Saved in:
Bibliographic Details
Main Authors: Pei Zhang, Yanpeng He, Zhimeng Sun, Dong Yue
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/1719553
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the parallel-joint rock column model is established based on PFC software, and the effects of different joint positions on the mechanical properties, acoustic emission characteristics, and damage evolution characteristics of rock columns are analyzed. In the PFC models, the intact rock is simulated by parallel-bond model, and the joints are simulated by flat-joint contact model. The research result shows that on the whole, when the joint is outside the rock pillar, the UCS of the rock pillar is higher than that of the joint inside the rock pillar, while the elastic modulus is less than that of rock pillar with joint inside. The evolution characteristics of acoustic emission of rock pillars at different joint positions are basically the same. However, the maximum value of acoustic emission events and corresponding deformation of rock pillars at different joint positions are different. The damage of jointed rock mass can generally show three stages: no damage, slow damage increase, and sharp damage increase.
ISSN:1070-9622
1875-9203