Study on Frequency Characteristics of Rotor Systems for Fault Detection Using Variational Mode Decomposition

Due to the complicated structure, vibration signal of rotating machinery is multicomponent with nonstationary and nonlinear features, so it is difficult to diagnose faults effectively. Therefore, effective extraction of vibration signal characteristics is the key to diagnose the faults of rotating m...

Full description

Saved in:
Bibliographic Details
Main Authors: Kai Chen, Xin-Cong Zhou, Jun-Qiang Fang, Li Qin
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2017/7218646
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the complicated structure, vibration signal of rotating machinery is multicomponent with nonstationary and nonlinear features, so it is difficult to diagnose faults effectively. Therefore, effective extraction of vibration signal characteristics is the key to diagnose the faults of rotating machinery. Mode mixing and illusive components existed in some conventional methods, such as EMD and EEMD, which leads to misdiagnosis in extracting signals. Given these reasons, a new fault diagnosis method, namely, variation mode decomposition (VMD), was proposed in this paper. VMD is a newly developed technique for adaptive signal decomposition, which can decompose a multicomponent signal into a series of quasi-orthogonal intrinsic mode functions (IMFs) simultaneously, corresponding to the components of signal clearly. To further research on VMD method, the advantages and characteristics of VMD are investigated via numerical simulations. VMD is then applied to detect oil whirl and oil whip for rotor systems fault diagnosis via practical vibration signal. The experimental results demonstrate the effectiveness of VMD method.
ISSN:1023-621X
1542-3034