Existence of nodal solutions of nonlinear Lidstone boundary value problems

We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem \begin{document}$ \begin{align} \left\{\begin{array}{ll} (-1)^m (u^{(2m)}(t)+c u^{(2m-2)}(t)) = \lambda a(t)f(u), \; \; \ \ \ t\in (0, r), \\ u^{(2i)}(0) = u^{(2i)}(r) = 0, \ \ i = 0, 1, \cdots, m-1,...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng Yan, Tingting Zhang
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024256
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590843593097216
author Meng Yan
Tingting Zhang
author_facet Meng Yan
Tingting Zhang
author_sort Meng Yan
collection DOAJ
description We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem \begin{document}$ \begin{align} \left\{\begin{array}{ll} (-1)^m (u^{(2m)}(t)+c u^{(2m-2)}(t)) = \lambda a(t)f(u), \; \; \ \ \ t\in (0, r), \\ u^{(2i)}(0) = u^{(2i)}(r) = 0, \ \ i = 0, 1, \cdots, m-1, \end{array} \right.~~(P) \end{align} $\end{document} where $ \lambda > 0 $ is a parameter, $ c $ is a constant, $ m\geq1 $ is an integer, $ a :[0, r]\rightarrow [0, \infty) $ is continuous with $ a\not\equiv0 $ on the subinterval within $ [0, r] $, and $ f: \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function. We analyze the spectrum structure of the corresponding linear eigenvalue problem via the disconjugacy theory and Elias's spectrum theory. As applications of our spectrum results, we show that problem $ (P) $ has nodal solutions under some suitable conditions. The bifurcation technique is used to obtain the main results of this paper.
format Article
id doaj-art-bef708cf0e064a0bbdb5e66a8b49c4b6
institution Kabale University
issn 2688-1594
language English
publishDate 2024-09-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj-art-bef708cf0e064a0bbdb5e66a8b49c4b62025-01-23T07:52:42ZengAIMS PressElectronic Research Archive2688-15942024-09-013295542555610.3934/era.2024256Existence of nodal solutions of nonlinear Lidstone boundary value problemsMeng Yan0Tingting Zhang1School of Mathematics and Statistics, Xidian University, Xi'an 710071, ChinaSchool of Mathematics and Statistics, Xidian University, Xi'an 710071, ChinaWe investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem \begin{document}$ \begin{align} \left\{\begin{array}{ll} (-1)^m (u^{(2m)}(t)+c u^{(2m-2)}(t)) = \lambda a(t)f(u), \; \; \ \ \ t\in (0, r), \\ u^{(2i)}(0) = u^{(2i)}(r) = 0, \ \ i = 0, 1, \cdots, m-1, \end{array} \right.~~(P) \end{align} $\end{document} where $ \lambda > 0 $ is a parameter, $ c $ is a constant, $ m\geq1 $ is an integer, $ a :[0, r]\rightarrow [0, \infty) $ is continuous with $ a\not\equiv0 $ on the subinterval within $ [0, r] $, and $ f: \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function. We analyze the spectrum structure of the corresponding linear eigenvalue problem via the disconjugacy theory and Elias's spectrum theory. As applications of our spectrum results, we show that problem $ (P) $ has nodal solutions under some suitable conditions. The bifurcation technique is used to obtain the main results of this paper.https://www.aimspress.com/article/doi/10.3934/era.2024256lidstonenodal solutionsspectrumbifurcationdisconjugacy theory
spellingShingle Meng Yan
Tingting Zhang
Existence of nodal solutions of nonlinear Lidstone boundary value problems
Electronic Research Archive
lidstone
nodal solutions
spectrum
bifurcation
disconjugacy theory
title Existence of nodal solutions of nonlinear Lidstone boundary value problems
title_full Existence of nodal solutions of nonlinear Lidstone boundary value problems
title_fullStr Existence of nodal solutions of nonlinear Lidstone boundary value problems
title_full_unstemmed Existence of nodal solutions of nonlinear Lidstone boundary value problems
title_short Existence of nodal solutions of nonlinear Lidstone boundary value problems
title_sort existence of nodal solutions of nonlinear lidstone boundary value problems
topic lidstone
nodal solutions
spectrum
bifurcation
disconjugacy theory
url https://www.aimspress.com/article/doi/10.3934/era.2024256
work_keys_str_mv AT mengyan existenceofnodalsolutionsofnonlinearlidstoneboundaryvalueproblems
AT tingtingzhang existenceofnodalsolutionsofnonlinearlidstoneboundaryvalueproblems