Existence of nodal solutions of nonlinear Lidstone boundary value problems

We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem \begin{document}$ \begin{align} \left\{\begin{array}{ll} (-1)^m (u^{(2m)}(t)+c u^{(2m-2)}(t)) = \lambda a(t)f(u), \; \; \ \ \ t\in (0, r), \\ u^{(2i)}(0) = u^{(2i)}(r) = 0, \ \ i = 0, 1, \cdots, m-1,...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng Yan, Tingting Zhang
Format: Article
Language:English
Published: AIMS Press 2024-09-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024256
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value problem \begin{document}$ \begin{align} \left\{\begin{array}{ll} (-1)^m (u^{(2m)}(t)+c u^{(2m-2)}(t)) = \lambda a(t)f(u), \; \; \ \ \ t\in (0, r), \\ u^{(2i)}(0) = u^{(2i)}(r) = 0, \ \ i = 0, 1, \cdots, m-1, \end{array} \right.~~(P) \end{align} $\end{document} where $ \lambda > 0 $ is a parameter, $ c $ is a constant, $ m\geq1 $ is an integer, $ a :[0, r]\rightarrow [0, \infty) $ is continuous with $ a\not\equiv0 $ on the subinterval within $ [0, r] $, and $ f: \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function. We analyze the spectrum structure of the corresponding linear eigenvalue problem via the disconjugacy theory and Elias's spectrum theory. As applications of our spectrum results, we show that problem $ (P) $ has nodal solutions under some suitable conditions. The bifurcation technique is used to obtain the main results of this paper.
ISSN:2688-1594